ﻻ يوجد ملخص باللغة العربية
Cascade decays of new scalars into final states with multiple photons and possibly quarks may lead to distinctive experimental signatures at high-energy colliders. Such signals are even more striking if the scalars are highly boosted, as when produced from the decay of a much heavier resonance. We study this type of events within the framework of the minimal stealth boson model, an anomaly-free $text{U}(1)_{Y}$ extension of the Standard Model with two complex scalar singlets. It is shown that, while those signals may have cross sections that might render them observable with LHC Run 2 data, they have little experimental coverage. We also establish a connection with a CMS excess observed in searches for new scalars decaying into diphoton final states near 96 GeV. In particular, we conclude that the predicted multiphoton signatures are compatible with such excess.
We discuss a $sim 3,sigma$ signal (local) in the light Higgs-boson search in the diphoton decay mode at $sim 96$ GeV as reported by CMS, together with a $sim 2,sigma$ excess (local) in the $b bar b$ final state at LEP in the same mass range. We inter
Stealth bosons are relatively light boosted particles with a cascade decay $S to A_1 A_2 to q bar q q bar q$, reconstructed as a single fat jet. In this work, we establish minimal extensions of the Standard Model that allow for such processes. Namely
The CMS collaboration reported a $sim 3 , sigma$ (local) excess at $96;$GeV in the search for light Higgs-boson decaying into two photons. This mass coincides with a $sim 2 , sigma$ (local) excess in the $bbar b$ final state at LEP. We show an interp
Color-singlet gauge bosons with renormalizable couplings to quarks but not to leptons must interact with additional fermions (anomalons) required to cancel the gauge anomalies. Analyzing the decays of such leptophobic bosons into anomalons, I show th
Recently, the CMS Collaboration observed the hint of a resonance decaying to two photons at about 96 GeV with a local significance of $2.8sigma$. While it is too early to say whether this will stand the test of time, such a resonance can easily be ac