ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of dephasing by mirror-symmetry breaking in weak-antilocalization magnetoresistance across the topological transition in Pb$_{1-x}$Sn$_{x}$Se

60   0   0.0 ( 0 )
 نشر من قبل Aleksandr Kazakov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many conductors, including recently studied Dirac materials, show saturation of coherence length on decreasing temperature. This surprising phenomenon is assigned to external noise, residual magnetic impurities or two-level systems specific to non-crystalline solids. Here, by considering the SnTe-class of compounds as an example, we show theoretically that breaking of mirror symmetry deteriorates Berrys phase quantization, leading to additional dephasing in weak-antilocalization magnetoresistance (WAL-MR). Our experimental studies of WAL-MR corroborate these theoretical expectations in (111) Pb$_{1-x}$Sn$_x$Se thin film with Sn contents $x$ corresponding to both topological crystalline insulator and topologically trivial phases. In particular, we find the shortening of the phase coherence length in samples with intentionally broken mirror symmetry. Our results indicate that the classification of quantum transport phenomena into universality classes should encompass, in addition to time-reversal and spin-rotation invariances, spatial symmetries in specific systems.

قيم البحث

اقرأ أيضاً

We present angle resolved photoemission spectroscopy measurements of the surface states on in-situ grown (111) oriented films of Pb$_{1-x}$Sn$_{x}$Se, a three dimensional topological crystalline insulator. We observe surface states with Dirac-like di spersion at $bar{Gamma}$ and $bar{M}$ in the surface Brillouin zone, supporting recent theoretical predictions for this family of materials. We study the parallel dispersion isotropy and Dirac-point binding energy of the surface states, and perform tight-binding calculations to support our findings. The relative simplicity of the growth technique is encouraging, and suggests a clear path for future investigations into the role of strain, vicinality and alternative surface orientations in (Pb,Sn)Se compounds.
Topological insulators are a novel class of quantum materials in which time-reversal symmetry, relativistic (spin-orbit) effects and an inverted band structure result in electronic metallic states on the surfaces of bulk crystals. These helical state s exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical proposals have suggested the existence of topological crystalline insulators, a novel class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in topological protection [1,2]. In this study, we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a topological crystalline insulator for x=0.23. Temperature-dependent magnetotransport measurements and angle-resolved photoelectron spectroscopy demonstrate that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a topological crystalline insulator. These experimental findings add a new class to the family of topological insulators. We expect these results to be the beginning of both a considerable body of additional research on topological crystalline insulators as well as detailed studies of topological phase transitions.
Topological crystalline insulators represent a novel topological phase of matter in which the surface states are protected by discrete point group-symmetries of the underlying lattice. Rock-salt lead-tin-selenide alloy is one possible realization of this phase which undergoes a topological phase transition upon changing the lead content. We used scanning tunneling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES) to probe the surface states on (001) Pb$_{1-x}$Sn$_{x}$Se in the topologically non-trivial (x=0.23) and topologically trivial (x=0) phases. We observed quasiparticle interference with STM on the surface of the topological crystalline insulator and demonstrated that the measured interference can be understood from ARPES studies and a simple band structure model. Furthermore, our findings support the fact that Pb$_{0.77}$Sn$_{0.23}$Se and PbSe have different topological nature.
The characteristics of topological insulators are manifested in both their surface and bulk properties, but the latter remain to be explored. Here we report bulk signatures of pressure-induced band inversion and topological phase transitions in Pb$_{ 1-x}$Sn$_x$Se ($x=$0.00, 0.15, and 0.23). The results of infrared measurements as a function of pressure indicate the closing and the reopening of the band gap as well as a maximum in the free carrier spectral weight. The enhanced density of states near the band gap in the topological phase give rise to a steep interband absorption edge. The change of density of states also yields a maximum in the pressure dependence of the Fermi level. Thus our conclusive results provide a consistent picture of pressure-induced topological phase transitions and highlight the bulk origin of the novel properties in topological insulators.
Weak antilocalization measurements has become a standard tool for studying quantum coherent transport in topological materials. It is often used to extract information about number of conducting channels and dephasing length of topological surface st ates. We study thin films of prototypical topological crystalline insulator SnTe. To access microscopic characteristic of these states we employ a model developed by Tkachov and Hankiewicz, [Physical Review B 84, 035444]. Using this model the spatial decay of the topological states is obtained from measurements of quantum corrections to the conductivity in perpendicular and parallel configurations of the magnetic field. Within this model we find interaction between two topological boundaries which results in scaling of the spatial decay with the film thickness. We attribute this behavior to bulk reservoir which mediates interactions by scattering events without phase breaking of topological carriers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا