ﻻ يوجد ملخص باللغة العربية
The growth of the spin-glass correlation length has been measured as a function of the waiting time $t_{mathrm{w}}$ on a single crystal of CuMn (6 at.%), reaching values $xisim 150$ nm, larger than any other glassy correlation-length measured to date. We find an aging rate $mathrm{d}ln,t_{mathrm{w}}/mathrm{d}ln,xi$ larger than found in previous measurements, which evinces a dynamic slowing-down as $xi$ grows. Our measured aging rate is compared with simulation results by the Janus collaboration. After critical effects are taken into account, we find excellent agreement with the Janus data.
We report on zero field cooled magnetization relaxation experiments on a concen- trated frozen ferrofluid exhibiting a low temperature superspin glass transition. With a method initially developed for spin glasses, we investigate the field dependence
Measuring ThermoRemanent Magnetization (TRM) decays on a single crystal CuMn(6$%$) spin glass sample, we have systematically mapped the rapid decrease of the characteristic timescale $tw_{eff}$ near $T_g$. Using $tw_{eff}$ to determine the length sca
The Gardner length scale $xi$ is the correlation length in the vicinity of the Gardner transition, which is an avoided transition in glasses where the phase space of the glassy phase fractures into smaller sub-basins on experimental time scales. We a
Several theories of the glass transition propose that the structural relaxation time {tau}{alpha} is controlled by a growing static length scale {xi} that is determined by the free energy landscape but not by the local dynamical rules governing its e
As a guideline for experimental tests of the ideal glass transition (Random Pinning Glass Transition, RPGT) that shall be induced in a system by randomly pinning particles, we performed first-principle computations within the Hypernetted chain approx