ترغب بنشر مسار تعليمي؟ اضغط هنا

Decay and electromagnetic production of strongly coupled quarkonia in pNRQCD

334   0   0.0 ( 0 )
 نشر من قبل Hee Sok Chung
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We improve the pNRQCD approach to annihilation processes of heavy quarkonium and make first pNRQCD predictions for exclusive electromagnetic production of heavy quarkonium. We consider strongly coupled quarkonia, i.e., quarkonia that are not Coulombic bound states. Possible strongly coupled quarkonia include excited charmonium and bottomonium states. For these, pNRQCD provides expressions for the decay and exclusive electromagnetic production NRQCD matrix elements that depend on the wavefunctions at the origin and few universal gluon field correlators. We compute electromagnetic decay widths and exclusive production cross sections, and inclusive decay widths into light hadrons for $P$-wave quarkonia at relative order $v^2$ and leading order, respectively. We also compute the decay widths of $2S$ and $3S$ bottomonium states into lepton pairs and their ratios with the inclusive widths into light hadrons at relative order $v^2$.



قيم البحث

اقرأ أيضاً

We develop a formalism for computing inclusive production cross sections of heavy quarkonia based on the nonrelativistic QCD and the potential nonrelativistic QCD effective field theories. Our formalism applies to strongly coupled quarkonia, which in clude excited charmonium and bottomonium states. Analogously to heavy quarkonium decay processes, we express nonrelativistic QCD long-distance matrix elements in terms of quarkonium wavefunctions at the origin and universal gluonic correlators. Our expressions for the long-distance matrix elements are valid up to corrections of order $1/N_c^2$. These expressions enhance the predictive power of the nonrelativistic effective field theory approach to inclusive production processes by reducing the number of nonperturbative unknowns, and make possible first-principle determinations of long-distance matrix elements once the gluonic correlators are known. Based on this formalism, we compute the production cross sections of $P$-wave charmonia and bottomonia at the LHC, and find good agreement with measurements.
We present a thorough analysis of the electromagnetic response of strongly coupled neutral plasmas described by the gauge/gravity correspondence. The coupling of the external electromagnetic field with the tower of quasi-normal modes of the plasmas s upports the presence of various electromagnetic modes with different properties. Among them we underline the existence of negative refraction with low dissipation for a transverse non-hydrodynamical mode. Previous hydrodynamical approaches have shown the ubiquitous character of negative refraction in charged plasmas and the absence thereof in neutral plasmas. Our results here extend the analysis for neutral plasmas beyond the hydrodynamical regime. As an application of these new insights we briefly discuss the case of the quark gluon plasma in the temperature dominated regime.
After an introduction motivating the study of quarkonium production, we review the recent developments in the phenomenology of quarkonium production in inclusive scatterings of hadrons and leptons. We naturally address data and predictions relevant f or the LHC, the Tevatron, RHIC, HERA, LEP, B factories and EIC. An up-to-date discussion of the contributions from feed downs within the charmonium and bottomonium families as well as from b hadrons to charmonia is also provided. This contextualises an exhaustive overview of new observables such as the associated production along with a Standard Model boson (photon, W and Z), with another quarkonium, with another heavy quark as well as with light hadrons or jets. We address the relevance of these reactions in order to improve our understanding of the mechanisms underlying quarkonium production as well as the physics of multi-parton interactions, in particular the double parton scatterings. An outlook towards future studies and facilities concludes this review.
73 - E. Gotsman 2020
In this paper we propose an approach which demonstrates the dependence of quarkoni production on the multiplicity of the accompanying hadrons. Our approach is based on the three gluons fusion mechanism, without assuming the multiplicity dependence of the saturation scale. We show, that we describe the experimental data, which has a dependence that is much steeper than the multiplicity of the hadrons.
Based on the two Higgs doublet model, we study the effect of Higgs-boson exchange on the (super)heavy quarkonium bar QQ, which induces a strong attractive force between a (super)heavy quark Q and an antiquark bar Q. An interesting application is the decay of (super)heavy quarkonia bar QQ into a Higgs boson associated with gauge bosons. The criterion for making the bar QQ bound state is studied. We also show that non-perturbative effects due to gluonic field fluctuations are rather small in such a heavy quark sector. Possible enhancement for productions and decays of bar QQ bound states made from the fourth generation quark Q is discussed for bar p p (at the Tevatron) and pp (at the LHC) collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا