ترغب بنشر مسار تعليمي؟ اضغط هنا

Source-solutions for the multi-dimensional Burgers equation

108   0   0.0 ( 0 )
 نشر من قبل Denis Serre
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have shown in a recent collaboration that the Cauchy problem for the multi-dimensional Burgers equation is well-posed when the initial data u(0) is taken in the Lebesgue space L 1 (R n), and more generally in L p (R n). We investigate here the situation where u(0) is a bounded measure instead, focusing on the case n = 2. This is motivated by the description of the asymptotic behaviour of solutions with integrable data, as t $rightarrow$ +$infty$. MSC2010: 35F55, 35L65. Notations. We denote $times$ p the norm in Lebesgue L p (R n). The space of bounded measure over R m is M (R m) and its norm is denoted $times$ M. The Dirac mass at X $in$ R n is $delta$ X or $delta$ x=X. If $ u$ $in$ M (R m) and $mu$ $in$ M (R q), then $ u$ $otimes$ $mu$ is the measure over R m+q uniquely defined by $ u$ $otimes$ $mu$, $psi$ = $ u$, f $mu$, g whenever $psi$(x, y) $ otequiv$ f (x)g(y). The closed halves of the real line are denoted R + and R --. * U.M.P.A., UMR CNRS-ENSL # 5669. 46 all{e}e dItalie,



قيم البحث

اقرأ أيضاً

196 - Gino I. Montecinos 2015
Analytic solutions for Burgers equations with source terms, possibly stiff, represent an important element to assess numerical schemes. Here we present a procedure, based on the characteristic technique to obtain analytic solutions for these equations with smooth initial conditions.
185 - Jeremie Unterberger 2015
We prove that the viscous Burgers equation has a globally defined smooth solution in all dimensions provided the initial condition and the forcing term are smooth and bounded together with their derivatives. Such solutions may have infinite energy. T he proof does not rely on energy estimates, but on a combination of the maximum principle and quantitative Schauder estimates. We obtain precise bounds on the sup norm of the solution and its derivatives, making it plain that there is no exponential increase in time. In particular, these bounds are time-independent if the forcing term is zero. To get a classical solution, it suffices to assume that the initial condition and the forcing term have bounded derivatives up to order two.
The Cauchy problem for a scalar conservation laws admits a unique entropy solution when the data $u_0$ is a bounded measurable function (Kruzhkov). The semi-group $(S_t)_{tge0}$ is contracting in the $L^1$-distance. For the multi-dimensional Burgers equation, we show that $(S_t)_{tge0}$ extends uniquely as a continuous semi-group over $L^p(mathbb{R}^n)$ whenever $1le p<infty$, and $u(t):=S_tu_0$ is actually an entropy solution to the Cauchy problem. When $ple qle infty$ and $t>0$, $S_t$ actually maps $L^p(mathbb{R}^n)$ into $L^q(mathbb{R}^n)$. These results are based upon new dispersive estimates. The ingredients are on the one hand Compensated Integrability, and on the other hand a De Giorgi-type iteration.
In this paper we consider a class of Burgers equation. We propose a new method of investigation for existence of classical solutions.
We show that the homogeneous viscous Burgers equation $(partial_t-etaDelta) u(t,x)+(ucdot abla)u(t,x)=0, (t,x)in{mathbb{R}}_+times{mathbb{R}}^d$ $(dge 1, eta>0)$ has a globally defined smooth solution if the initial condition $u_0$ is a smooth functi on growing like $o(|x|)$ at infinity. The proof relies mostly on estimates of the random characteristic flow defined by a Feynman-Kac representation of the solution. Viscosity independent a priori bounds for the solution are derived from these. The regularity of the solution is then proved for fixed $eta>0$ using Schauder estimates. The result extends with few modifications to initial conditions growing abnormally large in regions with small relative volume, separated by well-behaved bulk regions, provided these are stable under the characteristic flow with high probability. We provide a large family of examples for which this loose criterion may be verified by hand.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا