ﻻ يوجد ملخص باللغة العربية
We propose a renormalizable theory based on the $SU(3)_Ctimes SU(3)_Ltimes U(1)_X$ gauge symmetry, supplemented by the spontaneously broken $U(1)_{L_g}$ global lepton number symmetry and the $S_3 times Z_2 $ discrete group, which successfully describes the observed SM fermion mass and mixing hierarchy. In our model the top and exotic quarks get tree level masses, whereas the bottom, charm and strange quarks as well as the tau and muon leptons obtain their masses from a tree level Universal seesaw mechanism thanks to their mixing with charged exotic vector like fermions. The masses for the first generation SM charged fermions are generated from a radiative seesaw mechanism at one loop level. The light active neutrino masses are produced from a loop level radiative seesaw mechanism. Our model successfully accommodates the experimental values for electron and muon anomalous magnetic dipole moments.
We propose a predictive model based on the $SU(3)_Ctimes SU(3)_Ltimes U(1)_X$ gauge symmetry, which is supplemented by the $D_4$ family symmetry and several auxiliary cyclic symmetries whose spontaneous breaking produces the observed SM fermion mass
We show that, in frameworks of the economical 3-3-1 model, all fermions get masses. At the tree level, one up-quark and two down-quarks are massless, but the one-loop corrections give all quarks the consistent masses. This conclusion is in contradict
We propose an extension of the three-Higgs-doublet model (3HDM), where the Standard Model (SM) particle content is enlarged by the inclusion of two inert $SU(2)$ scalar doublets, two inert electrically neutral gauge singlet scalars, charged vector li
We show that under current experimental bound of the decays $e_arightarrow e_bgamma$, the recent experimental data of the muon anomalous magnetic dipole moment $(g-2)_{mu}$ can be explained in the framework of the 3-3-1 model with right handed neutri
The framed standard model (FSM) predicts a $0^+$ boson with mass around 20 MeV in the hidden sector, which mixes at tree level with the standard Higgs $h_W$ and hence acquires small couplings to quarks and leptons which can be calculated in the FSM a