ترغب بنشر مسار تعليمي؟ اضغط هنا

WALLABY -- An SKA Pathfinder HI Survey

74   0   0.0 ( 0 )
 نشر من قبل Baerbel Silvia Koribalski
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) is a next-generation survey of neutral hydrogen (HI) in the Local Universe. It uses the widefield, high-resolution capability of the Australian Square Kilometer Array Pathfinder (ASKAP), a radio interferometer consisting of 36 x 12-m dishes equipped with Phased-Array Feeds (PAFs), located in an extremely radio-quiet zone in Western Australia. WALLABY aims to survey three-quarters of the sky (-90 degr < Dec < +30 degr) to a redshift of z < 0.26, and generate spectral line image cubes at ~30 arcsec resolution and ~1.6 mJy/beam per 4 km/s channel sensitivity. ASKAPs instantaneous field of view at 1.4 GHz, delivered by the PAFs 36 beams, is about 30 sq deg. At an integrated signal-to-noise ratio of five, WALLABY is expected to detect over half a million galaxies with a mean redshift of z ~ 0.05 (~200 Mpc). The scientific goals of WALLABY include: (a) a census of gas-rich galaxies in the vicinity of the Local Group; (b) a study of the HI properties of galaxies, groups and clusters, in particular the influence of the environment on galaxy evolution; and (c) the refinement of cosmological parameters using the spatial and redshift distribution of low-bias gas-rich galaxies. For context we provide an overview of previous large-scale HI surveys. Combined with existing and new multi-wavelength sky surveys, WALLABY will enable an exciting new generation of panchromatic studies of the Local Universe. - First results from the WALLABY pilot survey are revealed, with initial data products publicly available in the CSIRO ASKAP Science Data Archive (CASDA).



قيم البحث

اقرأ أيضاً

We present observations of the Eridanus supergroup obtained with the Australian Square Kilometre Array Pathfinder (ASKAP) as part of the pre-pilot survey for the Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY). The total number of detect ed HI sources is 55, of which 12 are background galaxies not associated with the Eridanus supergroup. Two massive HI clouds are identified and large HI debris fields are seen in the NGC 1359 interacting galaxy pair, and the face-on spiral galaxy NGC 1385. We describe the data products from the source finding algorithm and present the basic parameters. The presence of distorted HI morphology in all detected galaxies suggests ongoing tidal interactions within the subgroups. The Eridanus group has a large fraction of HI deficient galaxies as compared to previously studied galaxy groups. These HI deficient galaxies are not found at the centre of the group. We find that galaxies in the Eridanus supergroup do not follow the general trend of the atomic gas fraction versus stellar mass scaling relation, which indicates that the scaling relation changes with environmental density. In general, the majority of these galaxies are actively forming stars.
HI observations of the Local Group dwarf irregular galaxies Sextans A and B, obtained with the Karoo Array Telescope (KAT-7) are presented. The KAT-7 wide field of view and excellent surface brightness sensitivity allows us to verify the true HI exte nt of the galaxies. We derive HI extends of 30$^{prime}$ and 20$^{prime}$ and total HI fluxes of 181 $pm$ 2.0 Jy.km.s$^{-1}$ and 105 $pm$ 1.4 Jy.km.s$^{-1}$ for Sextans A and B respectively. This result shows clearly the overestimate of the HI extent and total flux of 54$^{prime}$ and 264 Jy.km.s$^{-1}$ reported for Sextans A using the Effelsberg observations. Tilted ring models allow us to derive the rotation curves (RCs) of Sextans A and B out to 550$^{prime prime}$ ($sim$ 3.5 kpc) and 650$^{prime prime}$ ($sim$ 4 kpc) respectively. The RCs of the two galaxies are seen to decline in the outer parts. The dark matter distribution in Sextans A is better described by the pseudo-isothermal halo model when a M/L ratio of 0.2 is used. For Sextans B, the mass model fits are not as good but again an isothermal sphere with a M/L of 0.2 represents best the data. Using the MOdified Newtonian Dynamics (MOND), better fits are obtained when the constant a$_{0}$ is allowed to vary. The critical densities for gravitational instabilities are calculated using the Toomre-$Q$ and cloud-growth based on shear criterion. We find that in regions of star formation, the cloud growth criterion based on shear explains better the star formation in both Sextans A and B.
We present SoFiA 2, the fully automated 3D source finding pipeline for the WALLABY extragalactic HI survey with the Australian SKA Pathfinder (ASKAP). SoFiA 2 is a reimplementation of parts of the original SoFiA pipeline in the C programming language and makes use of OpenMP for multi-threading of the most time-critical algorithms. In addition, we have developed a parallel framework called SoFiA-X that allows the processing of large data cubes to be split across multiple computing nodes. As a result of these efforts, SoFiA 2 is substantially faster and comes with a much reduced memory footprint compared to its predecessor, thus allowing the large WALLABY data volumes of hundreds of gigabytes of imaging data per epoch to be processed in real-time. The source code has been made publicly available to the entire community under an open-source licence. Performance tests using mock galaxies injected into genuine ASKAP data suggest that in the absence of significant imaging artefacts SoFiA 2 is capable of achieving near-100% completeness and reliability above an integrated signal-to-noise ratio of about 5-6. We also demonstrate that SoFiA 2 generally recovers the location, integrated flux and w20 line width of galaxies with high accuracy. Other parameters, including the peak flux density and w50 line width, are more strongly biased due to the influence of the noise on the measurement. In addition, very faint galaxies below an integrated signal-to-noise ratio of about 10 may get broken up into multiple components, thus requiring a strategy to identify fragmented sources and ensure that they do not affect the integrity of any scientific analysis based on the SoFiA 2 output.
Context. Pisces A & Pisces B are the only two galaxies found via optical imaging and spectroscopy out of 22 HI clouds identified in the GALFAHI survey as dwarf galaxy candidates. Aims. Derive the HI content and kinematics of Pisces A & B. Methods. Ap erture synthesis HI observations using the seven dish Karoo Array Telescope (KAT-7), which is a pathfinder instrument for MeerKAT, the South African precursor to the mid-frequency Square Kilometre Array (SKA-MID). Results. The small rotation velocities detected of ~5 km/sec and ~10 km/sec in Pisces A & B respectively, and their HI content show that they are really dwarf irregular galaxies (dIrr). Despite that small rotation component, it is more the random motions ~9-11 km/sec that provide most of the gravitational support, especially in the outer parts. The study of their kinematics, especially the strong gradients of random motions, suggest that those two dwarf galaxies are not yet in equilibrium. Conclusions. These HI rich galaxies may be indicative of a large population of dwarfs at the limit of detectability. However, such gas-rich dwarf galaxies will most likely never be within the virial radius of MW-type galaxies and become sub-halo candidates. Systems such as Pisces A & B are more likely to be found at a few Mpc.s from MW-type galaxies.
This paper reports on the atomic hydrogen gas (HI) observations of the spiral galaxy NGC 1566 using the newly commissioned Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope. We measure an integrated HI flux density of $180.2$ Jy km s$^{-1}$ emanating from this galaxy, which translates to an HI mass of $1.94times10^{10}$M$_circ$ at an assumed distance of $21.3$ Mpc. Our observations show that NGC 1566 has an asymmetric and mildly warped HI disc. The HI-to-stellar mass fraction of NGC 1566 is $0.29$, which is high in comparison with galaxies that have the same stellar mass ($10^{10.8}$M$_circ$). We also derive the rotation curve of this galaxy to a radius of $50$ kpc and fit different mass models to it. The NFW, Burkert and pseudo-isothermal dark matter halo profiles fit the observed rotation curve reasonably well and recover dark matter fractions of $0.62$, $0.58$ and $0.66$, respectively. Down to the column density sensitivity of our observations ($N_{HI} = 3.7times10^{19}$ cm$^{-2}$), we detect no HI clouds connected to, or in the nearby vicinity of, the HI disc of NGC 1566 nor nearby interacting systems. We conclude that, based on a simple analytic model, ram pressure interactions with the IGM can affect the HI disc of NGC 1566 and is possibly the reason for the asymmetries seen in the HI morphology of NGC 1566.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا