ترغب بنشر مسار تعليمي؟ اضغط هنا

How efficient is the streaming instability in viscous protoplanetary disks?

122   0   0.0 ( 0 )
 نشر من قبل Min-Kai Lin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kan Chen




اسأل ChatGPT حول البحث

The streaming instability is a popular candidate for planetesimal formation by concentrating dust particles to trigger gravitational collapse. However, its robustness against physical conditions expected in protoplanetary disks is unclear. In particular, particle stirring by turbulence may impede the instability. To quantify this effect, we develop the linear theory of the streaming instability with external turbulence modelled by gas viscosity and particle diffusion. We find the streaming instability is sensitive to turbulence, with growth rates becoming negligible for alpha-viscosity parameters $alpha gtrsim mathrm{St} ^{1.5}$, where $mathrm{St}$ is the particle Stokes number. We explore the effect of non-linear drag laws, which may be applicable to porous dust particles, and find growth rates are modestly reduced. We also find that gas compressibility increase growth rates by reducing the effect of diffusion. We then apply linear theory to global models of viscous protoplanetary disks. For minimum-mass Solar nebula disk models, we find the streaming instability only grows within disk lifetimes beyond $sim 10$s of AU, even for cm-sized particles and weak turbulence ($alphasim 10^{-4}$). Our results suggest it is rather difficult to trigger the streaming instability in non-laminar protoplanetary disks, especially for small particles.

قيم البحث

اقرأ أيضاً

Protoplanetary disks often appear as multiple concentric rings in dust continuum emission maps and scattered light images. These features are often associated with possible young planets in these disks. Many non-planetary explanations have also been suggested, including snow lines, dead zones and secular gravitational instabilities in the dust. In this paper we suggest another potential origin. The presence of copious amounts of dust tends to strongly reduce the conductivity of the gas, thereby inhibiting the magneto-rotational instability, and thus reducing the turbulence in the disk. From viscous disk theory it is known that a disk tends to increase its surface density in regions where the viscosity (i.e. turbulence) is low. Local maxima in the gas pressure tend to attract dust through radial drift, increasing the dust content even more. We investigate mathematically if this could potentially lead to a feedback loop in which a perturbation in the dust surface density could perturb the gas surface density, leading to increased dust drift and thus amplification of the dust perturbation and, as a consequence, the gas perturbation. We find that this is indeed possible, even for moderately small dust grain sizes, which drift less efficiently, but which are more likely to affect the gas ionization degree. We speculate that this instability could be triggered by the small dust population initially, and when the local pressure maxima are strong enough, the larger dust grains get trapped and lead to the familiar ring-like shapes. We also discuss the many uncertainties and limitations of this model.
In the recent years, sub/mm observations of protoplanetary disks have discovered an incredible diversity of substructures in the dust emission. An important result was the finding that dust grains of mm size are embedded in very thin dusty disks. Thi s implies that the dust mass fraction in the midplane becomes comparable to the gas, increasing the importance of the interaction between the two components there. We address this problem by means of numerical 2.5D simulations in order to study the gas and dust interaction in fully global stratified disks. To this purpose, we employ the recently developed dust grain module in the PLUTO code. Our model focuses on a typical T Tauri disk model, simulating a short patch of the disk at 10 au which includes grains of constant Stokes number of $St=0.01$ and $St=0.1$, corresponding to grains with sizes of 0.9 cm and 0.9 mm, respectively, for the given disk model. By injecting a constant pebble flux at the outer domain, the system reaches a quasi steady state of turbulence and dust concentrations driven by the streaming instability. For our given setup and using resolutions up to 2500 cells per scale height we resolve the streaming instability, leading to local dust clumping and concentrations. Our results show dust density values of around 10-100 times the gas density with a steady state pebble flux between $3.5 times 10^{-4}$ and $2.5 times 10^{-3} M_{rm Earth}/mathit{year}$ for the models with $mathit{St}=0.01$ and $mathit{St}=0.1$. The grain size and pebble flux for model $mathit{St}=0.01$ compares well with dust evolution models of the first million years of disk evolution. For those grains the scatter opacity dominates the extinction coefficient at mm wavelengths. These types of global dust and gas simulations are a promising tool for studies of the gas and dust evolution at pressure bumps in protoplanetary disks.
155 - Urs Schafer , Anders Johansen , 2020
The streaming instability is a leading candidate mechanism to explain the formation of planetesimals. Yet, the role of this instability in the driving of turbulence in protoplanetary disks, given its fundamental nature as a linear hydrodynamical inst ability, has so far not been investigated in detail. We study the turbulence that is induced by the streaming instability as well as its interaction with the vertical shear instability. For this purpose, we employ the FLASH Code to conduct two-dimensional axisymmetric global disk simulations spanning radii from $1$ au to $100$ au, including the mutual drag between gas and dust as well as the radial and vertical stellar gravity. If the streaming instability and the vertical shear instability start their growth at the same time, we find the turbulence in the dust mid-plane layer to be primarily driven by the streaming instability. It gives rise to vertical gas motions with a Mach number of up to ${sim}10^{-2}$. The dust scale height is set in a self-regulatory manner to about $1%$ of the gas scale height. In contrast, if the vertical shear instability is allowed to saturate before the dust is introduced into our simulations, then it continues to be the main source of the turbulence in the dust layer. The vertical shear instability induces turbulence with a Mach number of ${sim}10^{-1}$ and thus impedes dust sedimentation. Nonetheless, we find the vertical shear instability and the streaming instability in combination to lead to radial dust concentration in long-lived accumulations which are significantly denser than those formed by the streaming instability alone. Thus, the vertical shear instability may promote planetesimal formation by creating weak overdensities that act as seeds for the streaming instability.
266 - Rixin Li , Andrew N. Youdin , 2018
The Streaming Instability (SI) is a mechanism to concentrate solids in protoplanetary disks. Nonlinear particle clumping from the SI can trigger gravitational collapse into planetesimals. To better understand the numerical robustness of the SI, we pe rform a suite of vertically-stratified 3D simulations with fixed physical parameters known to produce strong clumping. We vary the numerical implementation, namely the computational domain size and the vertical boundary conditions (vBCs), comparing newly-implemented outflow vBCs to the previously-used periodic and reflecting vBCs. We find strong particle clumping by the SI is mostly independent of the vBCs. However, peak particle densities are higher in larger simulation domains due to a larger particle mass reservoir. We report SI-triggered zonal flows, i.e., azimuthally-banded radial variations of gas pressure. These structures have low amplitudes, insufficient to halt particle radial drift, confirming that particle trapping in gas pressure maxima is not the mechanism of the SI. We find that outflow vBCs produce artificially large gas outflow rates at vertical boundaries. However, the outflow vBCs reduce artificial reflections at vertical boundaries, allowing more particle sedimentation, and showing less temporal variation and better convergence with box size. The radial spacing of dense particle filaments is $sim0.15$ gas scale heights ($H$) for all vBCs, which sets the feeding zone for planetesimal growth in self-gravitating simulations. Our results validate the use of the outflow vBCs in SI simulations, even with vertical boundaries close ($leq 0.4H$) to the disk midplane. Overall, our study demonstrates the numerical robustness of nonlinear particle clumping by the SI.
103 - Min-Kai Lin 2020
Under the right conditions, the streaming instability between imperfectly coupled dust and gas is a powerful mechanism for planetesimal formation as it can concentrate dust grains to the point of gravitational collapse. In its simplest form, the stre aming instability can be captured by analyzing the linear stability of unstratified disk models, which represent the midplane of protoplanetary disks. We extend such studies by carrying out vertically-global linear stability analyses of dust layers in protoplanetary disks. We find the dominant form of instability in stratified dust layers is one driven by the vertical gradient in the rotation velocity of the dust-gas mixture, but also requires partial dust-gas coupling. These vertically-shearing streaming instabilities grow on orbital timescales and occur on radial length scales $sim10^{-3}H_mathrm{g}$, where $H_mathrm{g}$ is the local pressure scale height. The classic streaming instability, associated with the relative radial drift between dust and gas, occur on radial length scales $sim10^{-2}H_mathrm{g}$, but have much smaller growth rates than vertically-shearing streaming instabilities. Including gas viscosity is strongly stabilizing and leads to vertically-elongated disturbances. We briefly discuss the potential effects of vertically-shearing streaming instabilities on planetesimal formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا