ﻻ يوجد ملخص باللغة العربية
We present a new semi-empirical model for the dust continuum number counts of galaxies at 1.1 millimeter and 850 micron. Our approach couples an observationally motivated model for the stellar mass and SFR distribution of galaxies with empirical scaling relations to predict the dust continuum flux density of these galaxies. Without a need to tweak the IMF, the model reproduces the currently available observations of the 1.1 millimeter and 850 micron number counts, including the observed flattening in the 1.1 millimeter number counts below 0.3 mJy citep{Gonzalez2019numbercounts} and the number counts in discrete bins of different galaxy properties. Predictions of our work include : (1) the galaxies that dominate the number counts at flux densities below 1 mJy (3 mJy) at 1.1 millimeter (850 $mu$m) have redshifts between $z=1$ and $z=2$, stellar masses of $sim 5times10^{10}~rm{M}_odot$, and dust masses of $sim 10^{8}~rm{M}_odot$; (2) the flattening in the observed 1.1 millimeter number counts corresponds to the knee of the 1.1 millimeter luminosity function. A similar flattening is predicted for the number counts at 850 $mu$m; (3) the model reproduces the redshift distribution of current 1.1 millimeter detections; (4) to efficiently detect large numbers of galaxies through their dust continuum, future surveys should scan large areas once reaching a 1.1 millimeter flux density of 0.1 mJy rather than integrating to fainter fluxes. Our modeling framework also suggests that the amount of information on galaxy physics that can be extracted from the 1.1 millimeter and 850 $mu$m number counts is almost exhausted.
We report 1.1 mm number counts revealed with the Atacama Large Millimeter/submillimeter Array (ALMA) in the Subaru/XMM-Newton Deep Survey Field (SXDF). The advent of ALMA enables us to reveal millimeter-wavelength number counts down to the faint end
Using the deepest 1.2 mm continuum map to date in the Hubble Ultra Deep Field obtained as part of the ALMA Spectroscopic Survey (ASPECS) large program, we measure the cosmic density of dust and implied gas (H$_{2}+$H I) mass in galaxies as a function
We present high-resolution 870-um ALMA continuum maps of 30 bright sub-millimeter sources in the UKIDSS UDS field. These sources are selected from deep, 1-square degrees 850-um maps from the SCUBA--2 Cosmology Legacy Survey, and are representative of
[abridged] Characterizing the number counts of faint, dusty star-forming galaxies is currently a challenge even for deep, high-resolution observations in the FIR-to-mm regime. They are predicted to account for approximately half of the total extragal
Sub/millimiter observations of dusty star-forming galaxies with ALMA have shown that the dust continuum emission occurs generally in compact regions smaller than the stellar distribution. However, it remains to be understood how systematic these find