ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of electron cooling on the polarization lifetime of a horizontally polarized storage ring beam

88   0   0.0 ( 0 )
 نشر من قبل Edward J. Stephenson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Karanth




اسأل ChatGPT حول البحث

A previous publication has shown that the in-plane polarization (IPP) component of a polarized 0.97-GeV/c deuteron beam in the COSY storage ring may acquire a polarization half-life in excess of 1000 s through a combination of beam bunching, electron cooling (prior to any spin manipulation), sextupole field adjustment, and a limitation of the beam intensity. This paper documents further tests pointing to additional gains in the IPP lifetime if cooling is active throughout the beam store.



قيم البحث

اقرأ أيضاً

In this paper, we demonstrate the connection between a magnetic storage ring with additional sextupole fields set so that the x and y chromaticities vanish and the maximizing of the lifetime of in-plane polarization (IPP) for a 0.97-GeV/c deuteron be am. The IPP magnitude was measured by continuously monitoring the down-up scattering asymmetry (sensitive to sideways polarization) in an in-beam, carbon-target polarimeter and unfolding the precession of the IPP due to the magnetic anomaly of the deuteron. The optimum operating conditions for a long IPP lifetime were made by scanning the field of the storage ring sextupole magnet families while observing the rate of IPP loss during storage of the beam. The beam was bunched and electron cooled. The IPP losses appear to arise from the change of the orbit circumference, and consequently the particle speed and spin tune, due to the transverse betatron oscillations of individual particles in the beam. The effects of these changes are canceled by an appropriate sextupole field setting.
In preparation for a demonstration of optical stochastic cooling in the Cornell Electron Storage Ring (CESR) we have developed a particle tracking simulation to study the relevant beam dynamics. Optical radiation emitted in the pickup undulator gives a momentum kick to that same particle in the kicker undulator. The optics of the electron bypass from pickup to kicker couples betatron amplitude and momentum offset to path length so that the momentum kick reduces emittance and momentum spread. Nearby electrons contribute an incoherent noise. Layout of the bypass line is presented that accommodates optics with a range of transverse and longitudinal cooling parameters. The simulation is used to determine cooling rates and their dependence on bunch and lattice parameters for bypass optics with distinct emittance and momentum acceptance.
121 - C. M. Bhat 2015
In this Letter, I report on a novel scheme for beam stacking without any beam emittance dilution using a barrier rf system in synchrotrons. The general principle of the scheme called longitudinal phase-space coating, validation of the concept via mul ti-particle beam dynamics simulations applied to the Fermilab Recycler, and its experimental demonstration are presented. In addition, it has been shown and illustrated that the rf gymnastics involved in this scheme can be used in measuring the incoherent synchrotron tune spectrum of the beam in barrier buckets and in producing a clean hollow beam in longitudinal phase space. The method of beam stacking in synchrotrons presented here is the first of its kind.
63 - C. M. Bhat 2004
I describe a new scheme for selectively isolating high density low longitudinal emittance beam particles in a storage ring from the rest of the beam without emittance dilution. I discuss the general principle of the method, called longitudinal moment um mining, beam dynamics simulations and results of beam experiments. Multi-particle beam dynamics simulations applied to the Fermilab 8 GeV Recycler (a storage ring) convincingly validate the concepts and feasibility of the method, which I have demonstrated with beam experiments in the Recycler. The method presented here is the first of its kind.
71 - H. Huang , J. Kewisch , C. Liu 2019
This paper reports the first spin tune measurement at high energies (24 GeV and 255 GeV) with a driven coherent spin motion. To maintain polarization in a polarized proton collider, it is important to know the spin tune of the polarized proton beam, which is defined as the number of full spin precessions per revolution. A nine-magnet spin flipper has demonstrated high spin-flip efficiency in the presence of two Siberian snakes [1]. The spin flipper drives a spin resonance with a given frequency (or tune) and strength. When the drive tune is close to the spin tune, the proton spin direction is not vertical anymore, but precesses around the vertical direction. By measuring the precession frequency of the horizontal component the spin tune can be precisely measured. A driven coherent spin motion and fast turn-by-turn polarization measurement are keys to the measurement. The vertical spin direction is restored after turning the spin flipper off and the polarization value is not affected by the measurement. The fact that this manipulation preserves the polarization makes it possible to measure the spin tune during operation of a high energy accelerator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا