ترغب بنشر مسار تعليمي؟ اضغط هنا

TICs 167692429 and 220397947: The first compact hierarchical triple stars discovered with TESS

76   0   0.0 ( 0 )
 نشر من قبل Tamas Borkovits Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery and complex analyses of the first two compact hierarchical triple star systems discovered with TESS in or near its southern continuous viewing zone during Year 1. Both TICs 167692429 and 220397947 were previously unknown eclipsing binaries, and the presence of a third companion star was inferred from eclipse timing variations exhibiting signatures of strong 3rd-body perturbations and, in the first system, also from eclipse depth variations. We carried out comprehensive analyses, including the simultaneous photodynamical modelling of TESS and archival ground-based WASP lightcurves, as well as eclipse timing variation curves. Also, for the first time, we included in the simultaneous fits multiple star spectral energy distribution data and theoretical PARSEC stellar isochrones, taking into account Gaia DR2 parallaxes and cataloged metallicities. We find that both systems have twin F-star binaries and a lower mass tertiary star. In the TIC 167692429 system the inner binary is moderately inclined ($i_{mut}=27^o$) with respect to the outer orbit, and the binary vs. outer (triple) orbital periods are 10.3 vs. 331 days, respectively. The mutually inclined orbits cause a driven precession of the binary orbital plane which leads to the disappearance of binary eclipses for long intervals. In the case of TIC 220397947 the two orbital planes are more nearly aligned and the inner vs. outer orbital periods are 3.5 and 77 days, respectively. In the absence of radial velocity observations, we were unable to calculate highly accurate masses and ages for the two systems. According to stellar isochrones TIC 167692429 might be either a pre-main sequence or an older post-MS system. In the case of TIC 220397947 our solution prefers a young, pre-MS scenario.

قيم البحث

اقرأ أيضاً

We report the discovery in $TESS$ Sectors 3 and 4 of a compact triply eclipsing triple star system. TIC 209409435 is a previously unknown eclipsing binary with a period of 5.717 days, and the presence of a third star in an outer eccentric orbit of 12 1.872 day period was found from two sets of third-body eclipses and from eclipse timing variations. The latter exhibit signatures of strong 3rd-body perturbations. After the discovery, we obtained follow-up ground-based photometric observations of several binary eclipses as well as another of the third-body eclipses. We carried out comprehensive analyses, including the simultaneous photodynamical modelling of $TESS$ and ground-based lightcurves (including both archival WASP data, and our own follow-up measurements), as well as eclipse timing variation curves. Also, we have included in the simultaneous fits multiple star spectral energy distribution data and theoretical PARSEC stellar isochrones. We find that the inner binary consists of near twin stars of mass 0.90 $M_odot$ and radius 0.88 $R_odot$. The third star is just 9% more massive and 18% larger in radius. The inner binary has a rather small eccentricity while the outer orbit has $e = 0.40$. The inner binary and outer orbit have inclination angles within 0.1$^circ$ and 0.2$^circ$ of 90$^circ$, respectively. The mutual inclination angle is $lesssim 1/4^circ$. All of these results were obtained without radial velocity observations.
Field stars are frequently formed in pairs, and many of these binaries are part of triples or even higher-order systems. Even though, the principles of single stellar evolution and binary evolution, have been accepted for a long time, the long-term e volution of stellar triples is poorly understood. The presence of a third star in an orbit around a binary system can significantly alter the evolution of those stars and the binary system. The rich dynamical behavior in three-body systems can give rise to Lidov-Kozai cycles, in which the eccentricity of the inner orbit and the inclination between the inner and outer orbit vary periodically. In turn, this can lead to an enhancement of tidal effects (tidal friction), gravitational-wave emission and stellar interactions such as mass transfer and collisions. The lack of a self-consistent treatment of triple evolution, including both three-body dynamics as well as stellar evolution, hinders the systematic study and general understanding of the long-term evolution of triple systems. In this paper, we aim to address some of these hiatus, by discussing the dominant physical processes of hierarchical triple evolution, and presenting heuristic recipes for these processes. To improve our understanding on hierarchical stellar triples, these descriptions are implemented in a public source code TrES which combines three-body dynamics (based on the secular approach) with stellar evolution and their mutual influences. Note that modeling through a phase of stable mass transfer in an eccentric orbit is currently not implemented in TrES , but can be implemented with the appropriate methodology at a later stage.
Joint analysis of radial velocities and position measurements of five hierarchical stellar systems is undertaken to determine elements of their inner and outer orbits and, whenever possible, their mutual inclinations. The inner and outer periods are 12.9 and 345 yr for HD 12376 (ADS 1613), 1.14 and ~1500 yr for HD 19971 (ADS 2390), 8.3 and 475 yr for HD 89795 (ADS 7338), 1.11 and 40 yr for HD 152027, 0.69 and 7.4 yr for HD 190412. The latter system with its co-planar and quasi-circular orbits belongs to the family of compact planetary-like hierarchies, while the orbits in HD 12376 have mutual inclination of 131 degrees.
The latest Gaia data release enables us to accurately identify stars that are more luminous than would be expected on the basis of their spectral type and distance. During an investigation of the 329 best Solar twin candidates uncovered among the spe ctra acquired by the GALAH survey, we identified 64 such over-luminous stars. In order to investigate their exact composition, we developed a data-driven methodology that can generate a synthetic photometric signature and spectrum of a single star. By combining multiple such synthetic stars into an unresolved binary or triple system and comparing the results to the actual photometric and spectroscopic observations, we uncovered 6 definitive triple stellar system candidates and an additional 14 potential candidates whose combined spectrum mimics the Solar spectrum. Considering the volume correction factor for a magnitude limited survey, the fraction of probable unresolved triple stars with long orbital periods is ~2 %. Possible orbital configurations of the candidates were investigated using the selection and observational limits. To validate the discovered multiplicity fraction, the same procedure was used to evaluate the multiplicity fraction of other stellar types.
Context. We present our findings on 18 formerly known ZZ Ceti stars observed by the TESS space telescope in 120s cadence mode during the survey observation of the southern ecliptic hemisphere. Aims. We focus on the frequency analysis of the space-b ased observations, comparing the results with the findings of the previous ground-based measurements. The frequencies detected by the TESS observations can serve as inputs for future asteroseismic analyses. Methods. We performed standard pre-whitening of the data sets to derive the possible pulsation frequencies of the different targets. In some cases, we fitted Lorentzians to the frequency groups that emerged as the results of short-term amplitude/phase variations that occurred during the TESS observations. Results. We detected more than 40 pulsation frequencies in seven ZZ Ceti stars observed in the 120s cadence by TESS, with better than 0.1 microHz precision. We found that HE 0532-5605 may be a new outbursting ZZ Ceti. Ten targets do not show any significant pulsation frequencies in their Fourier transforms, due to a combination of their intrinsic faintness and/or crowding on the large TESS pixels. We also detected possible amplitude/phase variations during the TESS observations in some cases. Such behaviour in these targets was not previously identified from ground-based observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا