ﻻ يوجد ملخص باللغة العربية
We reveal critical insights into problems of bias in state-of-the-art facial recognition (FR) systems using a novel Balanced Faces In the Wild (BFW) dataset: data balanced for gender and ethnic groups. We show variations in the optimal scoring threshold for face-pairs across different subgroups. Thus, the conventional approach of learning a global threshold for all pairs resulting in performance gaps among subgroups. By learning subgroup-specific thresholds, we not only mitigate problems in performance gaps but also show a notable boost in the overall performance. Furthermore, we do a human evaluation to measure the bias in humans, which supports the hypothesis that such a bias exists in human perception. For the BFW database, source code, and more, visit github.com/visionjo/facerec-bias-bfw.
Face recognition networks encode information about sensitive attributes while being trained for identity classification. Such encoding has two major issues: (a) it makes the face representations susceptible to privacy leakage (b) it appears to contri
Face recognition performance improves rapidly with the recent deep learning technique developing and underlying large training dataset accumulating. In this paper, we report our observations on how big data impacts the recognition performance. Accord
Deep learning has come a long way and has enjoyed an unprecedented success. Despite high accuracy, however, deep models are brittle and are easily fooled by imperceptible adversarial perturbations. In contrast to common inference-time attacks, Backdo
While GPTs with traditional fine-tuning fail to achieve strong results on natural language understanding (NLU), we show that GPTs can be better than or comparable to similar-sized BERTs on NLU tasks with a novel method P-tuning -- which employs train
The relation between the halo field and the matter fluctuations (halo bias), in the presence of massive neutrinos depends on the total neutrino mass, massive neutrinos introduce an additional scale-dependence of the bias which is usually neglected in