ترغب بنشر مسار تعليمي؟ اضغط هنا

A Comparison of Pooling Methods on LSTM Models for Rare Acoustic Event Classification

88   0   0.0 ( 0 )
 نشر من قبل Chieh-Chi Kao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Acoustic event classification (AEC) and acoustic event detection (AED) refer to the task of detecting whether specific target events occur in audios. As long short-term memory (LSTM) leads to state-of-the-art results in various speech related tasks, it is employed as a popular solution for AEC as well. This paper focuses on investigating the dynamics of LSTM model on AEC tasks. It includes a detailed analysis on LSTM memory retaining, and a benchmarking of nine different pooling methods on LSTM models using 1.7M generated mixture clips of multiple events with different signal-to-noise ratios. This paper focuses on understanding: 1) utterance-level classification accuracy; 2) sensitivity to event position within an utterance. The analysis is done on the dataset for the detection of rare sound events from DCASE 2017 Challenge. We find max pooling on the prediction level to perform the best among the nine pooling approaches in terms of classification accuracy and insensitivity to event position within an utterance. To authors best knowledge, this is the first kind of such work focused on LSTM dynamics for AEC tasks.

قيم البحث

اقرأ أيضاً

This paper proposes a network architecture mainly designed for audio tagging, which can also be used for weakly supervised acoustic event detection (AED). The proposed network consists of a modified DenseNet as the feature extractor, and a global ave rage pooling (GAP) layer to predict frame-level labels at inference time. This architecture is inspired by the work proposed by Zhou et al., a well-known framework using GAP to localize visual objects given image-level labels. While most of the previous works on weakly supervised AED used recurrent layers with attention-based mechanism to localize acoustic events, the proposed network directly localizes events using the feature map extracted by DenseNet without any recurrent layers. In the audio tagging task of DCASE 2017, our method significantly outperforms the state-of-the-art method in F1 score by 5.3% on the dev set, and 6.0% on the eval set in terms of absolute values. For weakly supervised AED task in DCASE 2018, our model outperforms the state-of-the-art method in event-based F1 by 8.1% on the dev set, and 0.5% on the eval set in terms of absolute values, by using data augmentation and tri-training to leverage unlabeled data.
In this paper, we present SpecAugment++, a novel data augmentation method for deep neural networks based acoustic scene classification (ASC). Different from other popular data augmentation methods such as SpecAugment and mixup that only work on the i nput space, SpecAugment++ is applied to both the input space and the hidden space of the deep neural networks to enhance the input and the intermediate feature representations. For an intermediate hidden state, the augmentation techniques consist of masking blocks of frequency channels and masking blocks of time frames, which improve generalization by enabling a model to attend not only to the most discriminative parts of the feature, but also the entire parts. Apart from using zeros for masking, we also examine two approaches for masking based on the use of other samples within the minibatch, which helps introduce noises to the networks to make them more discriminative for classification. The experimental results on the DCASE 2018 Task1 dataset and DCASE 2019 Task1 dataset show that our proposed method can obtain 3.6% and 4.7% accuracy gains over a strong baseline without augmentation (i.e. CP-ResNet) respectively, and outperforms other previous data augmentation methods.
The goal of this paper is text-independent speaker verification where utterances come from in the wild videos and may contain irrelevant signal. While speaker verification is naturally a pair-wise problem, existing methods to produce the speaker embe ddings are instance-wise. In this paper, we propose Cross Attentive Pooling (CAP) that utilizes the context information across the reference-query pair to generate utterance-level embeddings that contain the most discriminative information for the pair-wise matching problem. Experiments are performed on the VoxCeleb dataset in which our method outperforms comparable pooling strategies.
A recitation is a way of combining the words together so that they have a sense of rhythm and thus an emotional content is imbibed within. In this study we envisaged to answer these questions in a scientific manner taking into consideration 5 (five) well known Bengali recitations of different poets conveying a variety of moods ranging from joy to sorrow. The clips were recited as well as read (in the form of flat speech without any rhythm) by the same person to avoid any perceptual difference arising out of timbre variation. Next, the emotional content from the 5 recitations were standardized with the help of listening test conducted on a pool of 50 participants. The recitations as well as the speech were analyzed with the help of a latest non linear technique called Detrended Fluctuation Analysis (DFA) that gives a scaling exponent {alpha}, which is essentially the measure of long range correlations present in the signal. Similar pieces (the parts which have the exact lyrical content in speech as well as in the recital) were extracted from the complete signal and analyzed with the help of DFA technique. Our analysis shows that the scaling exponent for all parts of recitation were much higher in general as compared to their counterparts in speech. We have also established a critical value from our analysis, above which a mere speech may become a recitation. The case may be similar to the conventional phase transition, wherein the measurement of external condition at which the transformation occurs (generally temperature) is called phase transition. Further, we have also categorized the 5 recitations on the basis of their emotional content with the help of the same DFA technique. Analysis with a greater variety of recitations is being carried out to yield more interesting results.
The understanding and interpretation of speech can be affected by various external factors. The use of face masks is one such factors that can create obstruction to speech while communicating. This may lead to degradation of speech processing and aff ect humans perceptually. Knowing whether a speaker wears a mask may be useful for modeling speech for different applications. With this motivation, finding whether a speaker wears face mask from a given speech is included as a task in Computational Paralinguistics Evaluation (ComParE) 2020. We study novel acoustic features based on linear filterbanks, instantaneous phase and long-term information that can capture the artifacts for classification of speech with and without face mask. These acoustic features are used along with the state-of-the-art baselines of ComParE functionals, bag-of-audio-words, DeepSpectrum and auDeep features for ComParE 2020. The studies reveal the effectiveness of acoustic features, and their score level fusion with the ComParE 2020 baselines leads to an unweighted average recall of 73.50% on the test set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا