ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical relativity in spherical coordinates: A new dynamical spacetime and general relativistic MHD evolution framework for the Einstein Toolkit

160   0   0.0 ( 0 )
 نشر من قبل Vassilios Mewes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present SphericalNR, a new framework for the publicly available Einstein Toolkit that numerically solves the Einstein field equations coupled to the equations of general relativistic magnetohydrodynamics (GRMHD) in a 3+1 split of spacetime in spherical coordinates without symmetry assumptions. The spacetime evolution is performed using reference-metr



قيم البحث

اقرأ أيضاً

Numerical relativity codes that do not make assumptions on spatial symmetries most commonly adopt Cartesian coordinates. While these coordinates have many attractive features, spherical coordinates are much better suited to take advantage of approxim ate symmetries in a number of astrophysical objects, including single stars, black holes and accretion disks. While the appearance of coordinate singularities often spoils numerical relativity simulations in spherical coordinates, especially in the absence of any symmetry assumptions, it has recently been demonstrated that these problems can be avoided if the coordinate singularities are handled analytically. This is possible with the help of a reference-metric version of the Baumgarte-Shapiro-Shibata-Nakamura formulation together with a proper rescaling of tensorial quantities. In this paper we report on an implementation of this formalism in the Einstein Toolkit. We adapt the Einstein Toolkit infrastructure, originally designed for Cartesian coordinates, to handle spherical coordinates, by providing appropriate boundary conditions at both inner and outer boundaries. We perform numerical simulations for a disturbed Kerr black hole, extract the gravitational wave signal, and demonstrate that the noise in these signals is orders of magnitude smaller when computed on spherical grids rather than Cartesian grids. With the public release of our new Einstein Toolkit thorns, our methods for numerical relativity in spherical coordinates will become available to the entire numerical relativity community.
We describe the evolution of slowly spinning compact objects in the late inspiral with Newtonian corrections due to spin, tides, dissipation and post-Newtonian corrections to the point mass term in the action within the effective field theory framewo rk. We evolve the system numerically using a simple algorithm for point particle simulations and extract the lowest-order Newtonian gravitational waveform to study its phase evolution due to the different effects. We show that the matching of coefficients of the effective field theory for compact objects from systems that the gravitational wave observatories LIGO-Virgo currently detects might be possible and it can place tight constraints on fundamental physics.
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detectio n, in order-reduced dynamical Chern-Simons gravity, a theory with motivations in string theory and loop quantum gravity. We present results for the leading-order corrections to the merger and ringdown waveforms, as well as the ringdown quasi-normal mode spectrum. We estimate that such corrections may be discriminated in detections with signal to noise ratio $gtrsim 180-240$, with the precise value depending on the dimension of the GR waveform family used in data analysis.
We describe and present the first observational evidence that light propagating near a rotating black hole is twisted in phase and carries orbital angular momentum. The novel use of this physical observable as an additional tool for the previously kn own techniques of gravitational lensing allows us to directly measure, for the first time, the spin parameter of a black hole. With the additional information encoded in the orbital angular momentum, not only can we reveal the actual rotation of the compact object, but we can also use rotating black holes as probes to test General Relativity.
154 - Maria Okounkova 2020
A present challenge in testing general relativity (GR) with binary black hole gravitational wave detections is the inability to perform model-dependent tests due to the lack of merger waveforms in beyond-GR theories. In this study, we produce the fir st numerical relativity binary black hole gravitational waveform in Einstein dilaton Gauss-Bonnet (EDGB) gravity, a higher-curvature theory of gravity with motivations in string theory. We evolve a binary black hole system in order-reduced EDGB gravity, with parameters consistent with GW150914. We focus on the merger portion of the waveform, due to the presence of secular growth in the inspiral phase. We compute mismatches with the corresponding general relativity merger waveform, finding that from a post-inspiral-only analysis, we can constrain the EDGB lengthscale to be $sqrt{alpha_mathrm{GB}} lesssim 11$ km.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا