ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce the notion of the Hom-Leibniz-Rinehart algebra as an algebraic analogue of Hom-Leibniz algebroid, and prove that such an arbitrary split regular Hom-Leibniz-Rinehart algebra $L$ is of the form $L=U+sum_gamma I_gamma$ with $U$ a subspace of a maximal abelian subalgebra $H$ and any $I_gamma$, a well described ideal of $L$, satisfying $[I_gamma, I_delta]= 0$ if $[gamma] eq [delta]$. In the sequel, we develop techniques of connections of roots and weights for split Hom-Leibniz-Rinehart algebras respectively. Finally, we study the structures of tight split regular Hom-Leibniz-Rinehart algebras.
The aim of this paper is to study the structures of split regular Hom-Lie Rinehart algebras. Let $(L,A)$ be a split regular Hom-Lie Rinehart algebra. We first show that $L$ is of the form $L=U+sum_{[gamma]inGamma/thicksim}I_{[gamma]}$ with $U$ a vect
We introduce the notion of 3-Hom-Lie-Rinehart algebra and systematically describe a cohomology complex by considering coefficient modules. Furthermore, we consider extensions of a 3-Hom-Lie-Rinehart algebra and characterize the first cohomology space
After endowing with a 3-Lie-Rinehart structure on Hom 3-Lie algebras, we obtain a class of special Hom 3-Lie algebras, which have close relationships with representations of commutative associative algebras. We provide a special class of Hom 3-Lie-
In this paper, we define a class of 3-algebras which are called 3-Lie-Rinehart algebras. A 3-Lie-Rinehart algebra is a triple $(L, A, rho)$, where $A$ is a commutative associative algebra, $L$ is an $A$-module, $(A, rho)$ is a 3-Lie algebra $L$-modul
The goal of this paper is to study the structure of split regular BiHom-Leiniz superalgebras, which is a natural generalization of split regular Hom-Leiniz algebras and split regular BiHom-Lie superalgebras. By developing techniques of connections of