ترغب بنشر مسار تعليمي؟ اضغط هنا

Defect topology and annihilation by cooperative cascading movement of atoms in highly neutron irradiated graphite

73   0   0.0 ( 0 )
 نشر من قبل R Mittal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphite has been used as neutron moderator or reflector in many nuclear reactors. The irradiation of graphite in a nuclear reactor results in a complex population of defects. Heating of the irradiated graphite at high temperatures results in annihilation of the defects with release of an unusually large energy, called the Wigner energy. From various experiments on highly irradiated graphite samples from CIRUS reactor at Trombay and ab-initio simulations, we have for the first time identified various 2-, 3- and 4-coordinated topological structures in defected graphite, and provided microscopic mechanism of defect annihilation on heating and release of the Wigner energy. The annihilation process involves cascading cooperative movement of atoms in two steps involving an intermediate structure. Our work provides new insights in understanding of the defect topologies and annihilation in graphite which is of considerable importance to wider areas of graphitic materials including graphene and carbon nanotubes.


قيم البحث

اقرأ أيضاً

We have investigated the variation in the magnetization of highly ordered pyrolytic graphite (HOPG) after neutron irradiation, which introduces defects in the bulk sample and consequently gives rise to a large magnetic signal. We observe strong param agnetism in HOPG, increasing with the neutron fluence. We correlate the induced paramagnetism with structural defects by comparison with density-functional theory calculations. In addition to the in-plane vacancies, the trans-planar defects also contribute to the magnetization. The lack of any magnetic order between the local moments is possibly due to the absence of hydrogen/nitrogen chemisorption, or the magnetic order cannot be established at all in the bulk form.
Recently, magnetic order in highly oriented pyrolytic graphite (HOPG) induced by proton broad- and microbeam irradiation was discovered. Theoretical models propose that hydrogen could play a major role in the magnetism mechanism. We analysed the hydr ogen distribution of pristine as well as irradiated HOPG samples, which were implanted to micrometer-sized spots as well as extended areas with various doses of 2.25 MeV protons at the Leipzig microprobe LIPSION. For this we used the sensitive 3D hydrogen microscopy system at the Munich microprobe SNAKE. The background hydrogen level in pristine HOPG is determined to be less than 0.3 at-ppm. About 4.8e15 H-atoms/cm^2 are observed in the near-surface region (4 um depth resolution). The depth profiles of the implants show hydrogen located within a confined peak at the end of range, in agreement with SRIM Monte Carlo simulations, and no evidence of diffusion broadening along the c-axis. At sample with microspots, up to 40 at-% of the implanted hydrogen is not detected, providing support for lateral hydrogen diffusion.
Inelastic neutron scattering experiments were performed to study manganese(II) dimer excitations in the diluted one-, two-, and three-dimensional compounds CsMn(x)Mg(1-x)Br(3), K(2)Mn(x)Zn(1-x)F(4), and KMn(x)Zn(1-x)F(3) (x<0.10), respectively. The t ransitions from the ground-state singlet to the excited triplet, split into a doublet and a singlet due to the single-ion anisotropy, exhibit remarkable fine structures. These unusual features are attributed to local structural inhomogeneities induced by the dopant Mn atoms which act like lattice defects. Statistical models support the theoretically predicted decay of atomic displacements according to 1/r**2, 1/r, and constant (for three-, two-, and one-dimensional compounds, respectively) where r denotes the distance of the displaced atoms from the defect. The observed fine structures allow a direct determination of the local exchange interactions J, and the local intradimer distances R can be derived through the linear law dJ/dR.
Two-particle spectroscopy with correlated electron pairs is used to establish the causal link between the secondary electron spectrum, the $(pi+sigma)-$plasmon peak and the unoccupied band structure of highly oriented pyrolitic graphite. The plasmon spectrum is resolved with respect to the involved interband transitions and clearly exhibits final state effects, in particular due to the energy gap between the interlayer resonances along the $Gamma$A-direction. The corresponding final state effects can also be identified in the secondary electron spectrum. Interpretation of the results is performed on the basis of density functional theory and tight binding calculations. Excitation of the plasmon perturbs the symmetry of the system and leads to hybridisation of the interlayer resonances with atom-like $sigma^*$ bands along the $Gamma A$-direction. These hybrid states have a high density of states as well as sufficient mobility along the graphite $c$-axis leading to the sharp $sim$3 eV resonance in the spectrum of emitted secondary electrons reported throughout the literature.
Structural as well as magnetization studies have been carried out on graphite samples irradiated by neutrons over 50 years in the CIRUS research reactor at Trombay. Neutron diffraction studies reveal that the defects in irradiated graphite samples ar e not well annealed and remain significant up to high temperatures much greater than 653 K where the Wigner energy is completely released. We infer that the remnant defects may be intralayer Frenkel defects, which do not store large energy, unlike the interlayer Frenkel defects that store the Wigner energy. Magnetization studies on the irradiated graphite show ferromagnetic behavior even at 300 K and a large additional paramagnetic contribution at 5 K. Ab-initio calculations based on the spin-polarized density-functional theory show that the magnetism in defected graphite is essentially confined on to a single 2-coordinated carbon atom that is located around a vacancy in the hexagonal layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا