ﻻ يوجد ملخص باللغة العربية
Steering of negatively charged particle beams below 1 GeV has demonstrated to be possible with thin bent silicon and germanium crystals. A newly designed mechanical holder was used for bending crystals, since it allows a remotely-controlled adjustment of crystal bending and compensation of unwanted torsion. Bent crystals were installed and tested at the MAMI Mainz MIcrotron to achieve steering of 0.855-GeV electrons at different bending radii. We report the description and characterization of the innovative bending device developed at INFN Laboratori Nazionali di Legnaro (LNL).
The characterization of detectors fabricated from home-grown crystals is the most direct way to study crystal properties. We fabricated planar detectors from high-purity germanium (HPGe) crystals grown at the University of South Dakota (USD). In the
Germanium and silicon-germanium alloys have found entry into Si technology thanks to their compatibility with Si processing and their ability to tailor electronic properties by strain and band-gap engineering. Germaniums potential to extend Si functi
We present a measurement of multiple Coulomb scattering of 1 to 6 GeV/c electrons in thin (50-140 um) silicon targets. The data were obtained with the EUDET telescope Aconite at DESY and are compared to parametrisations as used in the Geant4 software
The cable capacitance in cryogenic and high vacuum applications of quartz tuning forks imposes severe constraints on the bandwidth and noise performance of the measurement. We present a single stage low noise transimpedance amplifier with a bandwidth
The results obtained in laboratory tests, using scintillator bars read by silicon photomultipliers are reported. The present approach is the first step for designing a precision tracking system to be placed inside a free magnetized volume for the cha