ﻻ يوجد ملخص باللغة العربية
We present the first discovery from the COol Companions ON Ultrawide orbiTS (COCONUTS) program, a large-scale survey for wide-orbit planetary and substellar companions. We have discovered a co-moving system COCONUTS-1, composed of a hydrogen-dominated white dwarf (PSO J058.9855+45.4184; $d=31.5$ pc) and a T4 companion (PSO J058.9869+45.4296) at a $40.6$ (1280 au) projected separation. We derive physical properties for COCONUTS-1B from (1) its near-infrared spectrum using cloudless Sonora atmospheric models, and (2) its luminosity and the white dwarfs age ($7.3_{-1.6}^{+2.8}$ Gyr) using Sonora evolutionary models. The two methods give consistent temperatures and radii, but atmospheric models infer a lower surface gravity and therefore an unphysically young age. Assuming evolutionary model parameters ($T_{rm eff}=1255^{+6}_{-8}$ K, $log{g}=5.44^{+0.02}_{-0.03}$ dex, $R=0.789^{+0.011}_{-0.005}$ R$_{rm Jup}$), we find cloudless model atmospheres have brighter Y- and J-band fluxes than the data, suggesting condensate clouds have not fully dispersed around 1300 K. The W2 flux (4.6 $mu$m) of COCONUTS-1B is fainter than models, suggesting non-equilibrium mixing of CO. To investigate the gravity dependence of the L/T transition, we compile all 60 known L6-T6 benchmarks and derive a homogeneous set of temperatures, surface gravities, and masses. As is well-known, young, low-gravity late-L dwarfs have significantly fainter, redder near-infrared photometry and $approx200-300$ K cooler temperatures than old, high-gravity objects. Our sample now reveals such gravity dependence becomes weaker for T dwarfs, with young objects having comparable near-infrared photometry and $approx100$ K cooler temperatures compared to old objects. Finally, we find that young objects have a larger amplitude J-band brightening than old objects, and also brighten at H band as they cross the L/T transition.
We present the identification of the COCONUTS-2 system, composed of the M3 dwarf L 34-26 and the T9 dwarf WISEPA J075108.79$-$763449.6. Given their common proper motions and parallaxes, these two field objects constitute a physically bound pair with
The L/T transition is an important evolutionary phase in brown dwarf atmospheres, providing us with a unique opportunity to explore the effects of clouds, convection, winds, gravity and metallicity across a very narrow temperature range. Understandin
The formation and the evolution of protoplanetary disks are important stages in the lifetime of stars. The processes of disk evolution and planet formation are intrinsically linked. We spatially resolve with GRAVITY/VLTI in the K-band the sub au-scal
We present the discovery of only the third brown dwarf known to eclipse a non-accreting white dwarf. Gaia parallax information and multi-colour photometry confirm that the white dwarf is cool (9950$pm$150K) and has a low mass (0.45$pm$0.05~MSun), and
We present new ages and abundance measurements for the pre-main sequence star PZ Tel. PZ Tel was recently found to host a young and low-mass companion. Using FEROS spectra we have measured atomic abundances (e.g. Fe and Li) and chromospheric activity