ﻻ يوجد ملخص باللغة العربية
We prove the generalized Franchetta conjecture for the locally complete family of hyper-Kahler eightfolds constructed by Lehn-Lehn-Sorger-van Straten (LLSS). As a corollary, we establish the Beauville-Voisin conjecture for very general LLSS eightfolds. The strategy consists in reducing to the Franchetta property for relative fourth powers of cubic fourfolds, by using the recent description of LLSS eightfolds as moduli spaces of semistable objects in the Kuznetsov component of the derived category of cubic fourfolds, together with its generalization to the relative setting due to Bayer-Lahoz-Macr`i-Nuer-Perry-Stellari. As a by-product, we compute the Chow motive of the Fano variety of lines on a smooth cubic hypersurface in terms of the Chow motive of the cubic hypersurface.
We investigate how the motive of hyper-Kahler varieties is controlled by weight-2 (or surface-like) motives via tensor operations. In the first part, we study the Voevodsky motive of singular moduli spaces of semistable sheaves on K3 and abelian surf
We review a combinatoric approach to the Hodge Conjecture for Fermat Varieties and announce new cases where the conjecture is true.
This note is an erratum to the paper Tautological classes on moduli spaces of hyper-Kahler manifolds. Thorsten Beckman and Mirko Mauri have pointed to us a gap in the proof of cite[Theorem 8.2.1]{Duke}. We do not know how to correct the proof. We can
We show that very general hypersurfaces in odd-dimensional simplicial projective toric varieties verifying a certain combinatorial property satisfy the Hodge conjecture (these include projective spaces). This gives a connection between the Oda conjec
We study the generalized Kahler-Ricci flow with initial data of symplectic type, and show that this condition is preserved. In the case of a Fano background with toric symmetry, we establish global existence of the normalized flow. We derive an exten