ترغب بنشر مسار تعليمي؟ اضغط هنا

Reaching the quantum Hall regime with rotating Rydberg-dressed atoms

70   0   0.0 ( 0 )
 نشر من قبل Michele Burrello
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the striking progress in the field of quantum gases, one of their much anticipated application -- the simulation of quantum Hall states -- remains elusive: all experimental approaches so far failed in reaching a sufficiently small ratio between atom and vortex densities. In this paper we consider rotating Rydberg--dressed atoms in magnetic traps: these gases offer strong and tunable non-local repulsive interactions and very low densities; hence they provide an exceptional platform to reach the quantum Hall regime. Based on the Lindemann criterion and the analysis of the interplay of the length scales of the system, we show that there exists an optimal value of the dressing parameters that minimizes the ratio between the filling factor of the system and its critical value to enter the Hall regime, thus making it possible to reach this strongly--correlated phase for more than 1000 atoms under realistic conditions.

قيم البحث

اقرأ أيضاً

The interplay between antiferromagnetic interaction and hole motion is capable of inducing intriguing conducting topological Haldane phases described by a finite non-local string order parameter. Here we show that these states of matter are captured by the one dimensional $t-J_z$ model which can be experimentally realized with dressed Rydberg atoms trapped onto a one dimensional optical lattice. In the sector with vanishing total magnetization exact Bethe ansatz calculations associated to bosonization technique allow to predict that both metallic and superconducting topological Haldane states can be achieved. With the addition of an appropriate magnetic field the system enters in a domain wall structure with finite total magnetization. In this regime conducting topological Haldane states are confined in domains separated by regions where fully polarized Luttinger liquid occurs. A procedure to dynamically stabilize such Haldane topological phases starting from a confined Ising state is also described
Quantum spin ice represents a paradigmatic example on how the physics of frustrated magnets is related to gauge theories. In the present work we address the problem of approximately realizing quantum spin ice in two dimensions with cold atoms in opti cal lattices. The relevant interactions are obtained by weakly admixing van der Waals interactions between laser admixed Rydberg states to the atomic ground state atoms, exploiting the strong angular dependence of interactions between Rydberg p-states together with the possibility of designing step-like potentials. This allows us to implement Abelian gauge theories in a series of geometries, which could be demonstrated within state of the art atomic Rydberg experiments. We numerically analyze the family of resulting microscopic Hamiltonians and find that they exhibit both classical and quantum order by disorder, the latter yielding a quantum plaquette valence bond solid. We also present strategies to implement Abelian gauge theories using both s- and p-Rydberg states in exotic geometries, e.g. on a 4-8 lattice.
Spontaneously crystalline ground states, called quantum crystals, of a trapped Rydberg-dressed Bose-Einstein condensate are numerically investigated. As a result described by a mean-field order parameter, such states simultaneously possess crystallin e and superfluid properties. A hexagonal droplet lattice is observed in a quasi-two-dimensional system when dressing interaction is sufficiently strong. Onset of these states is characterized by a drastic drop of the non-classical rotational inertia proposed by Leggett [Phys. Rev. Lett. 25, 1543 (1970)]. In addition, an AB stacking bilayer lattice can also be attained. Due to an anisotropic interaction possibly induced by an external electric field, transition from a hexagonal to a nearly square droplet lattice is also observed.
We analyze the zero-temperature phases of an array of neutral atoms on the kagome lattice, interacting via laser excitation to atomic Rydberg states. Density-matrix renormalization group calculations reveal the presence of a wide variety of complex s olid phases with broken lattice symmetries. In addition, we identify a novel regime with dense Rydberg excitations that has a large entanglement entropy and no local order parameter associated with lattice symmetries. From a mapping to the triangular lattice quantum dimer model, and theories of quantum phase transitions out of the proximate solid phases, we argue that this regime could contain one or more phases with topological order. Our results provide the foundation for theoretical and experimental explorations of crystalline and liquid states using programmable quantum simulators based on Rydberg atom arrays.
Over the last decade, systems of individually-controlled neutral atoms, interacting with each other when excited to Rydberg states, have emerged as a promising platform for quantum simulation of many-body problems, in particular spin systems. Here, w e review the techniques underlying quantum gas microscopes and arrays of optical tweezers used in these experiments, explain how the different types of interactions between Rydberg atoms allow a natural mapping onto various quantum spin models, and describe recent results that were obtained with this platform to study quantum many-body physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا