ترغب بنشر مسار تعليمي؟ اضغط هنا

Triggering mixing and deceleration in FRI jets: a solution

376   0   0.0 ( 0 )
 نشر من قبل Manel Perucho Pla
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Manel Perucho




اسأل ChatGPT حول البحث

Since Fanaroff & Riley (1974) reported the morphological and brightness dichotomy of radiogalaxies, and it became clear that the symmetric emission from jets and counter-jets in the centre-brightened, less powerful, FRI sources could be caused by jet deceleration, many works have addressed different mechanisms that could cause this difference. Recent observational results seem to indicate that the deceleration must be caused by the development of small-scale instabilities that force mixing at the jet boundary. According to these results, the mixing layer expands and propagates down to the jet axis along several kiloparsecs, until it covers the whole jet cross-section. Several candidate mechanisms have been proposed as the initial trigger for the generation of such mixing layer. However, the instabilities proposed so far do not fully manage to explain the observations of FRI jets and/or require a triggering mechanism. Therefore, there is not still a satisfactory explanation for the original cause of jet deceleration. In this letter, I show that the penetration (and exit) of stars from jets could give the adequate explanation by means of creating a jet-interstellar medium mixing layer that expands across the jet.

قيم البحث

اقرأ أيضاً

203 - A. Capetti 2016
We built a catalog of 219 FRI radio galaxies (FRIs), called FRICAT, selected from a published sample and obtained by combining observations from the NVSS, FIRST, and SDSS surveys. We included in the catalog the sources with an edge-darkened radio mor phology, redshift $leq 0.15$, and extending (at the sensitivity of the FIRST images) to a radius $r$ larger than 30 kpc from the center of the host. We also selected an additional sample (sFRICAT) of 14 smaller (10 $<r<$ 30 kpc) FRIs, limiting to $z<0.05$. The hosts of the FRICAT sources are all luminous ($-21 gtrsim M_r gtrsim -24$), red early-type galaxies with black hole masses in the range $10^8 lesssim M_{rm BH} lesssim 3times10^9 M_odot$; the spectroscopic classification based on the optical emission line ratios indicates that they are all low excitation galaxies. Sources in the FRICAT are then indistinguishable from the FRIs belonging to the Third Cambridge Catalogue of Radio Sources (3C) on the basis of their optical properties. Conversely, while the 3C-FRIs show a strong positive trend between radio and [OIII] emission line luminosity, these two quantities are unrelated in the FRICAT sources; at a given line luminosity, they show radio luminosities spanning about two orders of magnitude and extending to much lower ratios between radio and line power than 3C-FRIs. Our main conclusion is that the 3C-FRIs just represent the tip of the iceberg of a much larger and diverse population of FRIs.
We present a multi-epoch (20 years baseline) kinematical investigation of HH52, 53, and 54 at optical and near-IR wavelengths, along with medium and high- resolution spectroscopic analyses, probing the kinematical and physical time variability condit ions of the gas along the flows. By means of multi-epoch and multi-wavelength narrow-band images, we derived proper motions, tangential velocities, velocity and flux variability of the knots. Radial velocities and physical parameters of the gas were derived from spectroscopy. Finally, spatial velocities and inclination of the flows were obtained by combining both imaging and spectroscopy. The P.M. analysis reveals three distinct, partially overlapping outflows. In 20 years, about 60% of the knots show some degree of flux variability. Our set of observations apparently indicates acceleration and deceleration in a variety of knots along the jets. For about 20% of the knots, mostly coincident with working surfaces or interacting knots along the flows, a relevant variability in both flux and velocity is observed. We argue that both variabilities are related and that all or part of the kinetic energy lost by the interacting knots is successively radiated. The analysis indicates the presence of very light, ionised, and hot flows, impacting a denser medium. Several knots are deflected. At least for a couple of them (HH54 G and G0), the deflection originates from the collision of the two. For the more massive parts of the flow, the deflection is likely the result of the flow collision with a dense cloud or with clumps.
63 - P. Kharb 2012
(ABRIDGED) We present here the results from new Very Long Baseline Array observations at 1.6 and 5 GHz of 19 galaxies of a complete sample of 21 UGC FRI radio galaxies. New Chandra data of two sources, viz., UGC00408 and UGC08433, are combined with t he Chandra archival data of 13 sources. The 5 GHz observations of ten core-jet sources are polarization-sensitive, while the 1.6 GHz observations constitute second epoch total intensity observations of nine core-only sources. Polarized emission is detected in the jets of seven sources at 5 GHz, but the cores are essentially unpolarized, except in M87. Polarization is detected at the jet edges in several sources, and the inferred magnetic field is primarily aligned with the jet direction. This could be indicative of magnetic field shearing due to jet-medium interaction, or the presence of helical magnetic fields. The jet peak intensity $I_ u$ falls with distance $d$ from the core, following the relation, $I_ upropto d^a$, where $a$ is typically -1.5. Assuming that adiabatic expansion losses are primarily responsible for the jet intensity dimming, two limiting cases are considered: [1] the jet has a constant speed on parsec-scales and is expanding gradually such that the jet radius $rpropto d^0.4$; this expansion is however unobservable in the laterally unresolved jets at 5 GHz, and [2] the jet is cylindrical and is accelerating on parsec-scales. Accelerating parsec-scale jets are consistent with the phenomenon of magnetic driving in Poynting flux dominated jets. Chandra observations of 15 UGC FRIs detect X-ray jets in nine of them. The high frequency of occurrence of X-ray jets in this complete sample suggests that they are a signature of a ubiquitous process in FRI jets.
In this paper we present steady-state RMHD simulations that include a mass-load term to study the process of jet deceleration. The mass-load mimics the injection of a proton-electron plasma from stellar winds within the host galaxy into initially pai r plasma jets, with mean stellar mass-losses ranging from $10^{-14}$ to $10^{-9},{M_odot,yr^{-1}}$. The spatial jet evolution covers $sim 500,{rm pc}$ from jet injection in the grid at 10~pc from the jet nozzle. Our simulations use a relativistic gas equation of state and a pressure profile for the ambient medium. We compare these simulations with previous dynamical simulations of relativistic, non-magnetised jets. Our results show that toroidal magnetic fields can prevent fast jet expansion and the subsequent embedding of further stars via magnetic tension. In this sense, magnetic fields avoid a runaway deceleration process. Furthermore, when the mass-load is large enough to increase the jet density and produce fast, differential jet expansion, the conversion of magnetic energy flux into kinetic energy flux (i.e., magnetic acceleration), helps to delay the deceleration process with respect to non-magnetised jets. We conclude that the typical stellar population in elliptical galaxies cannot explain jet deceleration in classical FRI radio galaxies. However, we observe a significant change in the jet composition, thermodynamical parameters and energy dissipation along its evolution, even for moderate values of the mass-load.
We investigate the relation between the two modes of outflow (wind and jet) in radio-loud active galactic nuclei (AGN). For this study we have carried out a systematic and homogeneous analysis of XMM-Newton spectra of a sample of 16 suitable radio-lo ud Seyfert-1 AGN. The ionised winds in these AGN are parameterised through high-resolution X-ray spectroscopy and photoionisation modelling. We discover a significant inverse correlation between the column density NH of the ionised wind and the radio-loudness parameter R of the jet. We explore different possible explanations for this NH-R relation and find that ionisation, inclination, and luminosity effects are unlikely to be responsible for the observed relation. We argue that the NH-R relation is rather a manifestation of the magnetic driving mechanism of the wind from the accretion disk. Change in the magnetic field configuration from toroidal to poloidal, powering either the wind or the jet mode of the outflow, is the most feasible explanation for the observed decline in the wind NH as the radio jet becomes stronger. Our findings provide evidence for a wind-jet bimodality in radio-loud AGN and shine new light on the link between these two modes of outflow. This has far-reaching consequences for the accretion disk structure and the wind ejection mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا