ﻻ يوجد ملخص باللغة العربية
Since Fanaroff & Riley (1974) reported the morphological and brightness dichotomy of radiogalaxies, and it became clear that the symmetric emission from jets and counter-jets in the centre-brightened, less powerful, FRI sources could be caused by jet deceleration, many works have addressed different mechanisms that could cause this difference. Recent observational results seem to indicate that the deceleration must be caused by the development of small-scale instabilities that force mixing at the jet boundary. According to these results, the mixing layer expands and propagates down to the jet axis along several kiloparsecs, until it covers the whole jet cross-section. Several candidate mechanisms have been proposed as the initial trigger for the generation of such mixing layer. However, the instabilities proposed so far do not fully manage to explain the observations of FRI jets and/or require a triggering mechanism. Therefore, there is not still a satisfactory explanation for the original cause of jet deceleration. In this letter, I show that the penetration (and exit) of stars from jets could give the adequate explanation by means of creating a jet-interstellar medium mixing layer that expands across the jet.
We built a catalog of 219 FRI radio galaxies (FRIs), called FRICAT, selected from a published sample and obtained by combining observations from the NVSS, FIRST, and SDSS surveys. We included in the catalog the sources with an edge-darkened radio mor
We present a multi-epoch (20 years baseline) kinematical investigation of HH52, 53, and 54 at optical and near-IR wavelengths, along with medium and high- resolution spectroscopic analyses, probing the kinematical and physical time variability condit
(ABRIDGED) We present here the results from new Very Long Baseline Array observations at 1.6 and 5 GHz of 19 galaxies of a complete sample of 21 UGC FRI radio galaxies. New Chandra data of two sources, viz., UGC00408 and UGC08433, are combined with t
In this paper we present steady-state RMHD simulations that include a mass-load term to study the process of jet deceleration. The mass-load mimics the injection of a proton-electron plasma from stellar winds within the host galaxy into initially pai
We investigate the relation between the two modes of outflow (wind and jet) in radio-loud active galactic nuclei (AGN). For this study we have carried out a systematic and homogeneous analysis of XMM-Newton spectra of a sample of 16 suitable radio-lo