ترغب بنشر مسار تعليمي؟ اضغط هنا

Accelerated design of Fe-based soft magnetic materials using machine learning and stochastic optimization

110   0   0.0 ( 0 )
 نشر من قبل Yuhao Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Machine learning was utilized to efficiently boost the development of soft magnetic materials. The design process includes building a database composed of published experimental results, applying machine learning methods on the database, identifying the trends of magnetic properties in soft magnetic materials, and accelerating the design of next-generation soft magnetic nanocrystalline materials through the use of numerical optimization. Machine learning regression models were trained to predict magnetic saturation ($B_S$), coercivity ($H_C$) and magnetostriction ($lambda$), with a stochastic optimization framework being used to further optimize the corresponding magnetic properties. To verify the feasibility of the machine learning model, several optimized soft magnetic materials -- specified in terms of compositions and thermomechanical treatments -- have been predicted and then prepared and tested, showing good agreement between predictions and experiments, proving the reliability of the designed model. Two rounds of optimization-testing iterations were conducted to search for better properties.



قيم البحث

اقرأ أيضاً

Solar-energy plays an important role in solving serious environmental problems and meeting high-energy demand. However, the lack of suitable materials hinders further progress of this technology. Here, we present the largest inorganic solar-cell mate rial search to date using density functional theory (DFT) and machine-learning approaches. We calculated the spectroscopic limited maximum efficiency (SLME) using Tran-Blaha modified Becke-Johnson potential for 5097 non-metallic materials and identified 1997 candidates with an SLME higher than 10%, including 934 candidates with suitable convex-hull stability and effective carrier mass. Screening for 2D-layered cases, we found 58 potential materials and performed G0W0 calculations on a subset to estimate the prediction-uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine learning model to pre-screen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/ and https://github.com/usnistgov/jarvis .
In machine learning (ML), it is in general challenging to provide a detailed explanation on how a trained model arrives at its prediction. Thus, usually we are left with a black-box, which from a scientific standpoint is not satisfactory. Even though numerous methods have been recently proposed to interpret ML models, somewhat surprisingly, interpretability in ML is far from being a consensual concept, with diverse and sometimes contrasting motivations for it. Reasonable candidate properties of interpretable models could be model transparency (i.e. how does the model work?) and post hoc explanations (i.e., what else can the model tell me?). Here, I review the current debate on ML interpretability and identify key challenges that are specific to ML applied to materials science.
Geometric information such as the space groups and crystal systems plays an important role in the properties of crystal materials. Prediction of crystal system and space group thus has wide applications in crystal material property estimation and str ucture prediction. Previous works on experimental X-ray diffraction (XRD) and density functional theory (DFT) based structure determination methods achieved outstanding performance, but they are not applicable for large-scale screening of materials compositions. There are also machine learning models using Magpie descriptors for composition based material space group determination, but their prediction accuracy only ranges between 0.638 and 0.907 in different kinds of crystals. Herein, we report an improved machine learning model for predicting the crystal system and space group of materials using only the formula information. Benchmark study on a dataset downloaded from Materials Project Database shows that our random forest models based on our new descriptor set, achieve significant performance improvements compared with previous work with accuracy scores ranging between 0.712 and 0.961 in terms of space group classification. Our model also shows large performance improvement for crystal system prediction. Trained models and source code are freely available at url{https://github.com/Yuxinya/SG_predict}
151 - Xin Liu , Su Tian , Fei Tao 2020
Machine learning models are increasingly used in many engineering fields thanks to the widespread digital data, growing computing power, and advanced algorithms. Artificial neural networks (ANN) is the most popular machine learning model in recent ye ars. Although many ANN models have been used in the design and analysis of composite materials and structures, there are still some unsolved issues that hinder the acceptance of ANN models in the practical design and analysis of composite materials and structures. Moreover, the emerging machine learning techniques are posting new opportunities and challenges in the data-based design paradigm. This paper aims to give a state-of-the-art literature review of ANN models in the nonlinear constitutive modeling, multiscale surrogate modeling, and design optimization of composite materials and structures. This review has been designed to focus on the discussion of the general frameworks and benefits of ANN models to the above problems. Moreover, challenges and opportunities in each key problem are identified and discussed. This paper is expected to open the discussion of future research scope and new directions to enable efficient, robust, and accurate data-driven design and analysis of composite materials and structures.
Magnetic topological insulators and semi-metals have a variety of properties that make them attractive for applications including spintronics and quantum computation, but very few high-quality candidate materials are known. In this work, we use syste matic high-throughput density functional theory calculations to identify magnetic topological materials from 40000 three-dimensional materials in the JARVIS-DFT database (https://jarvis.nist.gov/jarvisdft). First, we screen materials with net magnetic moment > 0.5 {mu}B and spin-orbit spillage > 0.25, resulting in 25 insulating and 564 metallic candidates. The spillage acts as a signature of spin-orbit induced band-inversion. Then, we carry out calculations of Wannier charge centers, Chern numbers, anomalous Hall conductivities, surface bandstructures, and Fermi-surfaces to determine interesting topological characteristics of the screened compounds. We also train machine learning models for predicting the spillage, bandgaps, and magnetic moments of new compounds, to further accelerate the screening process. We experimentally synthesize and characterize a few candidate materials to support our theoretical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا