ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of a fast lane for positional transition in a microparticle-suspended nematic liquid crystal cell

229   0   0.0 ( 0 )
 نشر من قبل Chen-Xu Wu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, based on the numerical calculation of total energy utilizing the Greens function method, we found that the external electric field applied to a microparticle-suspended nematic liquid crystal cell, if reaching a critical value, combined with its direction, surface anchoring feature and molecular dielectric anisotropy, is possible to create an anisotropic bubble around the microparticle with a vertical fast lane, in which the microparticle can, driven by the asymmetric buoyant force, vertically move swiftly from the cells midplane to a new equilibrium position, triggering a positional transition discovered by the author previously. Such a new equilibrium position is decided via a competition between the buoyant force and the effective force built upon the microparticle by the elastic energy gradient along the lane. The threshold value of external field, depends on thickness $L$ and Frank elastic constant $K$ and slightly on the microparticle size and density, in a Fr{e}edericksz-like manner, but by a factor. For a nematic liquid crystal cell with planar surface alignment, a bistable equilibrium structure for the transition is found when the direction of the applied electric field is (a) perpendicular to the two plates of the cell with positive molecular dielectric anisotropy, or (b) parallel to the two plates and the anchoring direction of the cell with negative molecular dielectric anisotropy. Except for the formation of a vertical fast lane, when the electric field applied is parallel to both the two plates and perpendicular to the anchoring direction, the microparticle suspended in the nematic liquid crystal tends to be trapped in the midplane, regardless of the sign of the molecular dielectric anisotropy. Such phenomenon also occurs for negative molecular dielectric anisotropy while the external is applied perpendicular to the two plates.

قيم البحث

اقرأ أيضاً

117 - Ke Xiao , Xi Chen , 2019
In this paper, a Freedericksz-like positional transition is found for a spherical micro-droplet suspended in a nematic liquid crystal cell in the presence of an external electric field. Based on the numerical calculation of elastic energy using Green function method, the equilibrium position of micro-droplet is decided through a competition between the buoyant force and the effective force built by the elastic energy gradient existing inside the nematic liquid crystal(NLC) cell. It is shown that the elastic energy dominates the kinetics of micro-droplet until the external field applied reaches a critical value large enough to flatten the elastic energy contour in the central region, which enables the asymmetric buoyant force to drive the liquid droplet abruptly from the cell midplane to a new equilibrium position. It is also found that such a threshold value of external field, which triggers positional transition, depends on thickness $L$ and Frank elastic constant $K$, in a Freedericksz-like manner, but multiplied by a factor of $3sqrt{pi}$. An explicit formula proposed for the critical electric field agrees extremely well with the numerical calculation.
We consider a mathematical model that describes the flow of a Nematic Liquid Crystal (NLC) film placed on a flat substrate, across which a spatially-varying electric potential is applied. Due to their polar nature, NLC molecules interact with the (no nuniform) electric field generated, leading to instability of a flat film. Implementation of the long wave scaling leads to a partial differential equation that predicts the subsequent time evolution of the thin film. This equation is coupled to a boundary value problem that describes the interaction between the local molecular orientation of the NLC (the director field) and the electric potential. We investigate numerically the behavior of an initially flat film for a range of film heights and surface anchoring conditions.
We report a dynamic light scattering study of the fluctuation modes in a thermotropic liquid crystalline mixture of monomer and dimer compounds that exhibits the twist-bend nematic ($mathrm{N_{TB}}$) phase. The results reveal a spectrum of overdamped fluctuations that includes two nonhydrodynamic and one hydrodynamic mode in the $mathrm{N_{TB}}$ phase, and a single nonhydrodynamic plus two hydrodynamic modes (the usual nematic optic axis or director fluctuations) in the higher temperature, uniaxial nematic phase. The properties of these fluctuations and the conditions for their observation are comprehensively explained by a Landau-deGennes expansion of the free energy density in terms of heliconical director and helical polarization fields that characterize the $mathrm{N_{TB}}$ structure, with the latter serving as the primary order parameter. A coarse-graining approximation simplifies the theoretical analysis, and enables us to demonstrate quantitative agreement between the calculated and experimentally determined temperature dependence of the mode relaxation rates.
We study the flow behaviour of a twist-bend nematic $(N_{TB})$ liquid crystal. It shows three distinct shear stress ($sigma$) responses in a certain range of temperatures and shear rates ($dot{gamma}$). In Region-I, $sigmasimsqrt{dot{gamma}}$, in reg ion-II, the stress shows a plateau, characterised by a power law $sigmasim{dot{gamma}}^{alpha}$, where $alphasim0.1-0.4$ and in region-III, $sigmasimdot{gamma}$. With increasing shear rate, $sigma$ changes continuously from region-I to II, whereas it changes discontinuously with a hysteresis from region-II to III. In the plateau (region-II), we observe a dynamic stress fluctuations, exhibiting regular, periodic and quasiperiodic oscillations under the application of steady shear. The observed spatiotemporal dynamics in our experiments are close to those were predicted theoretically in sheared nematogenic fluids.
We study the optical properties of gold nanoparticles coated with a nematic liquid crystal whose director field is distributed around the nanoparticle according to the anchoring conditions at the surface of the nanoparticle. The distribution of the n ematic liquid crystal is obtained by minimization of the corresponding Frank free-energy functional whilst the optical response is calculated by the discrete-dipole approximation. We find, in particular, that the anisotropy of the nematic liquid-crystal coating does not affect much the (isotropic) optical response of the nanoparticle. However, for strong anchoring of the nematic liquid-crystal molecules on the surface of nanoparticle, the inhomogeneity of the coating which is manifested by a ring-type singularity (disclination or Saturn ring), produces an enhancement of the extinction cross spectrum over the entire visible spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا