ﻻ يوجد ملخص باللغة العربية
The orientation, chirality, and dynamics of solar eruptive filaments is a key to understanding the magnetic field of coronal mass ejections (CMEs) and therefore to predicting the geoeffectiveness of CMEs arriving at Earth. However, confusion and contention remain over the relationship between the filament chirality, magnetic helicity, and sense of rotation during eruption. To resolve the ambiguity in observations, in this paper, we used stereoscopic observations to determine the rotation direction of filament apex and the method proposed by Chen et al. (2014) to determine the filament chirality. Our sample of 12 eruptive active-region filaments establishes a strong one-to-one relationship, i.e., during the eruption, sinistral/dextral filaments (located in the southern/northern hemisphere) rotate clockwise/counterclockwise when viewed from above, and corroborates a weak hemispheric preference, i.e., a filament and related sigmoid both exhibit a forward (reverse) S shape in the southern (northern) hemisphere, which suggests that the sigmoidal filament is associated with a low-lying magnetic flux rope with its axis dipped in the middle. As a result of rotation, the projected S shape of a filament is anticipated to be reversed during eruption.
In this article, we report an evidence of very high and statistically significant relationship between hemispheric asymmetry in solar coronal rotation rate and solar activity. Our approach is based on cross correlation of hemispheric asymmetry index
A hemispheric preference in the dominant sign of magnetic helicity has been observed in numerous features in the solar atmosphere: i.e., left-handed/right-handed helicity in the northern/southern hemisphere. The relative importance of different physi
In our earlier study of this series (Park et al. 2020, Paper I), we examined the hemispheric sign preference (HSP) of magnetic helicity flux $dH/dt$ across photospheric surfaces of 4802 samples of 1105 unique active regions (ARs) observed during sola
In this paper we study the effects of hemispheric imbalance of magnetic helicity density on breaking the equatorial reflection symmetry of the dynamo generated large-scale magnetic field. Our study employs the axisymmetric dynamo model which takes in
Solar coronal mass ejections (CMEs) are main drivers of the most powerful non-recurrent geomagnetic storms. In the extreme-ultraviolet range, CMEs are accompanied by bright post-eruption arcades and dark dimmings. The analysis of events of the Solar