ﻻ يوجد ملخص باللغة العربية
The MUonE experiment aims at a precision measurement of the hadronic vacuum polarization contribution to the muon $g-2$, via elastic muon-electron scattering. Since the current muon $g-2$ anomaly hints at the potential existence of new physics (NP) related to the muon, the question then arises as to whether the measurement of hadronic vacuum polarization in MUonE could be affected by the same NP as well. In this work, we address this question by investigating a variety of NP explanations of the muon $g-2$ anomaly via either vector or scalar mediators with either flavor-universal, non-universal or even flavor-violating couplings to electrons and muons. We derive the corresponding MUonE sensitivity in each case and find that the measurement of hadronic vacuum polarization at the MUonE is not vulnerable to any of these NP scenarios.
We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant $alpha$ and is broken down into pure QED, electroweak, and hadro
We reevaluate the hadronic vacuum polarisation contributions to the muon magnetic anomaly and to the running of the electromagnetic coupling constant at the $Z$-boson mass. We include newest $e^+e^- to$ hadrons cross-section data together with a phen
We report our (HPQCD) progress on the calculation of the Hadronic Vacuum Polarisation contribution to the anomalous magnetic moment of muon. In this article we discuss the calculations for the light (up/down) quark connected contribution using our me
This paper introduces a new approach to measure the muon magnetic moment anomaly $a_{mu} = (g-2)/2$, and the muon electric dipole moment (EDM) $d_{mu}$ at the J-PARC muon facility. The goal of our experiment is to measure $a_{mu}$ and $d_{mu}$ using
A new QCD sum rule determination of the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_{mu}^{rm hvp}$, is proposed. This approach combines data on $e^{+}e^{-}$ annihilation into hadrons, pertu