ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning of friction noise by accessing the rolling-sliding option

166   0   0.0 ( 0 )
 نشر من قبل Soumen Das
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Variable power transmission in mechanical systems is often achieved by devices, e.g., clutches and brakes, that use dry friction. In these systems, the variability in power transmission is brought about by engaging and disengaging the friction plates. Though commonly used, this method of making the coupling noisy is not as versatile as their electrical analog. An alternative method would be to intermittently vary the frictional force. In this paper, we demonstrate a self-organized way to tune the noise in the frictional coupling between two surfaces which are in relative motion with each other. This is achieved by exploiting the complexity that arises from the frictional interaction of the balls which are placed in a circular groove between the surfaces. The extent of floppiness in the coupling is related to the rate at which the balls make transitions between their rolling and sliding states. If the moving surface is soft and the static surface is hard we show that with increasing filling fraction of the balls the transitions between rolling and sliding against the static surface give way to the transitions between rolling and sliding against the moving surface. As a consequence, the noise in the coupling is large for both small and large filling fraction with a dip in the middle. In contrast, the sliding with the static surface is suppressed if the moving pate is hard and the noise in the coupling decreases monotonically with the filling fraction of the balls.

قيم البحث

اقرأ أيضاً

The structure and motion of carbon and h-BN nanotubes (NTs) deposited on graphene is inquired theoretically by simulations based on state-of-the-art interatomic force fields. Results show that any typical cylinder-over-surface approximation is essent ially inaccurate. NTs tend to flatten at the interface with the substrate and upon driving they can either roll or slide depending on their size and on their relative orientation with the substrate. In the epitaxially aligned orientation we find that rolling is always the main mechanism of motion, producing a kinetic friction linearly growing with the number of walls, in turn causing an unprecedented supra-linear scaling with the contact area. A 30 degrees misalignment raises superlubric effects, making sliding favorable against rolling. The resulting rolling-to-sliding transition in misaligned NTs is explained in terms of the faceting appearing in large multi-wall tubes, which is responsible for the increased rotational stiffness. Modifying the geometrical conditions provides an additional means of drastically tailoring the frictional properties in this unique tribological system.
We report on memory effects involved in the transient frictional response of a contact interface between a silicone rubber and a spherical glass probe when it is perturbed by changes in the orientation of the driving motion or by velocity steps. From measurements of the displacement fields at the interface, we show that observed memory effects can be accounted for by the non-uniform distribution of the sliding velocity within the contact interface. As a consequence of these memory effects, the friction force may no longer be aligned with respect to the sliding trajectory. In addition, stick-slip motions with a purely geometrical origin are also evidenced. These observations are adequately accounted for by a friction model which takes into account heterogeneous displacements within the contact area. When a velocity dependence of the frictional stress is incorporated in this the model, transient regimes induced by velocity steps are also adequately described. The good agreement between the model and experiments outlines the role of space heterogeneities in memory effects involved in soft matter friction.
An atom moving in a vacuum at constant velocity and parallel to a surface experiences a frictional force induced by the dissipative interaction with the quantum fluctuations of the electromagnetic field. We show that the combination of nonequilibrium dynamics, anomalous Doppler effect and spin-momentum locking of light mediates an intriguing interplay between the atoms translational and rotational motion. In turn, this deeply affects the drag force in a way that is reminiscent of classical rolling friction. Our fully non-Markovian and nonequilibrium description reveals counterintuitive features characterizing the atoms velocity-dependent rotational dynamics. These results prompt interesting directions for tuning the interaction and for investigating nonequilibrium dynamics as well as the properties of confined light.
Understanding granular materials aging poses a substantial challenge: Grain contacts form networks with complex topologies, and granular flow is far from equilibrium. In this letter, we experimentally measure a three-dimensional granular systems reve rsibility and aging under cyclic compression. We image the grains using a refractive-index-matched fluid, then analyze the images using the artificial intelligence of variational autoencoders. These techniques allow us to track all the grains translations and three-dimensional rotations with accuracy sufficient to infer contact-point sliding and rolling. Our observations reveal unique roles played by three-dimensional rotations in granular flow, aging, and energy dissipation. First, we find that granular rotations dominate the bulk dynamics, penetrating more deeply into the granular material than translations do. Second, sliding and rolling do not exhibit aging across the experiment, unlike translations. Third, aging appears not to minimize energy dissipation, according to our experimental measurements of rotations, combined with soft-sphere simulations. The experimental tools, analytical techniques, and observations that we introduce expose all the degrees of freedom of the far-from-equilibrium dynamics of granular flow.
Markov State Modeling has recently emerged as a key technique for analyzing rare events in thermal equilibrium molecular simulations and finding metastable states. Here we export this technique to the study of friction, where strongly non-equilibrium events are induced by an external force. The approach is benchmarked on the well-studied Frenkel-Kontorova model, where we demonstrate the unprejudiced identification of the minimal basis microscopic states necessary for describing sliding, stick-slip and dissipation. The steps necessary for the application to realistic frictional systems are highlighted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا