ﻻ يوجد ملخص باللغة العربية
For a 2-connected graph $G$ on $n$ vertices and two vertices $x,yin V(G)$, we prove that there is an $(x,y)$-path of length at least $k$ if there are at least $frac{n-1}{2}$ vertices in $V(G)backslash {x,y}$ of degree at least $k$. This strengthens a well-known theorem due to ErdH{o}s and Gallai in 1959. As the first application of this result, we show that a 2-connected graph with $n$ vertices contains a cycle of length at least $2k$ if it has at least $frac{n}{2}+k$ vertices of degree at least $k$. This confirms a 1975 conjecture made by Woodall. As another applications, we obtain some results which generalize previous theorems of Dirac, ErdH{o}s-Gallai, Bondy, and Fujisawa et al., present short proofs of the path case of Loebl-Koml{o}s-S{o}s Conjecture which was verified by Bazgan et al. and of a conjecture of Bondy on longest cycles (for large graphs) which was confirmed by Fraisse and Fournier, and make progress on a conjecture of Bermond.
The ErdH{o}s-Faber-Lov{a}sz conjecture (posed in 1972) states that the chromatic index of any linear hypergraph on $n$ vertices is at most $n$. In this paper, we prove this conjecture for every large $n$. We also provide stabili
Generalized Turan problems have been a central topic of study in extremal combinatorics throughout the last few decades. One such problem is maximizing the number of cliques of size $t$ in a graph of a fixed order that does not contain any path (or c
For fixed $p$ and $q$, an edge-coloring of the complete graph $K_n$ is said to be a $(p, q)$-coloring if every $K_p$ receives at least $q$ distinct colors. The function $f(n, p, q)$ is the minimum number of colors needed for $K_n$ to have a $(p, q)$-
An $r$-uniform hypergraph ($r$-graph for short) is called linear if every pair of vertices belong to at most one edge. A linear $r$-graph is complete if every pair of vertices are in exactly one edge. The famous Brown-ErdH{o}s-Sos conjecture states t
We provide a cyclic permutation analogue of the ErdH os-Szekeres theorem. In particular, we show that every cyclic permutation of length $(k-1)(ell-1)+2$ has either an increasing cyclic sub-permutation of length $k+1$ or a decreasing cyclic sub-permu