ترغب بنشر مسار تعليمي؟ اضغط هنا

SALT revisits DY Cen: a rapidly-evolving strontium-rich single helium star

97   0   0.0 ( 0 )
 نشر من قبل Simon Jeffery
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hydrogen-deficient star DY Cen has been reported as an R CrB-type variable, an extreme helium star (with some hydrogen), and as a single-lined spectroscopic binary. It has been associated with a dramatic change in visual brightness and colour corresponding to a change in effective temperature ($T_{mathrm eff}$) of some 20,000 K in the last century. To characterize the binary orbit and $T_{mathrm eff}$ changes more precisely, new high-resolution spectroscopy has been obtained with SALT. The previous orbital period is not confirmed; previous measurements may have been confused by the presence of pulsations. Including data from earlier epochs (1987, 2002, and 2010), self-consistent spectral analyses from all four epochs demonstrate an increase in $T_{mathrm eff}$ from 18,800 to 24,400 K between 1987 and 2015. Line profiles demonstrate that the surface rotation has increased by a factor two over the same interval. This is commensurate with the change in $T_{mathrm eff}$ and an overall contraction. Rotation will exceed critical if contraction continues. The 1987 spectrum shows evidence of a very high abundance of the s-process element strontium. The very rapid evolution, non-negligible surface hydrogen and high surface strontium point to a history involving a very late thermal pulse. Observations over the next thirty years should look for a decreasing pulsation period, reactivation of R CrB-type activity as the star seeks to shed angular momentum and increasing illumination by emission lines from nebular material ejected in the past.



قيم البحث

اقرأ أيضاً

219 - David A. Bohlender , J.B. Rice , 2010
The helium-peculiar star a Cen exhibits line profile variations of elements such as iron, nitrogen and oxygen in addition to its well-known extreme helium variability. New high S/N, high-resolution spectra are used to perform a quantitative measureme nt of the abundances of the star and determine the relation of the concentrations of the heavier elements on the surface of the star to the helium concentration and the magnetic field orientation. Doppler images have been created using programs described in earlier papers by Rice and others. An alternative surface abundance mapping code has been used to model the helium line variations after our Doppler imaging of certain individual helium lines produced mediocre results. We confirm the long-known existence of helium-rich and helium-poor hemispheres on a Cen and we measure a difference of more than two orders of magnitude in helium abundance from one side of the star to the other. Helium is overabundant by a factor of about 5 over much of the helium-rich hemisphere. Of particular note is our discovery that the helium-poor hemisphere has a very high abundance of helium-3, approximately equal to the helium-4 abundance. a Cen is therefore a new member of the small group of helium-3 stars and the first well-established magnetic member of the class. For the three metals investigated here, there are two strong concentrations of abundance near the equator consistent with the positive magnetic maximum and two somewhat weaker concentrations of abundance where the helium concentration is centered and roughly where the negative peak of the magnetic field would be found. Another strong concentration is found near the equator and this is not explainable in terms of any simple symmetry with the helium abundance or the apparent magnetic field main polar locations.
SALT spectra of the helium-rich hot subdwarf EC22536-5304 show strong absorption lines of triply-ionized lead. Analysis of the HRS spectrum and a follow-up SALT/RSS spectrum show EC22536-5304 to have surface properties (temperature, gravity, helium/h ydrogen ratio) similar to other heavy-metal subdwarfs. With a lead overabundance of 4.8 dex relative to solar, EC22536-5304 is the most lead-rich intermediate helium subdwarf discovered so far.
295 - Jia-Shu Niu , Hui-Fang Xue 2021
People cannot witness the stellar evolution process of a single star obviously in most cases because of its extremely secular time-scale, except for some special time nodes in it (such as the supernova explosion). But in some specific evolutionary ph ases, we have the chances to witness such process gradually on human times-scales. When a star evolved leaving from the main sequence, the hydrogen nuclei fusion in its core is gradually transferring into the shell. In the Hertzsprung-Russell diagram, its evolutionary phase falls into the Hertzsprung gap, which is one of the most rapidly evolving phases in the life of a star. Here we report a discovery of a rapidly evolving high-amplitude $delta$ Scuti star KIC6382916 (J19480292+4146558) which is crossing the Hertzsprung gap. According to the analysis of the archival data, we find three independent pulsation modes of it, whose amplitudes and frequencies are variating distinctly in 4 years. The period variation rates of the three pulsation modes are one or two orders larger than the best seismic model constructed by the standard evolution theory, which indicates the current theory cannot precisely describe the evolution process in this rapidly evolving phase and needs further upgrades. Moreover, the newly introduced Interaction Diagram can help us to find the interactions between the three independent pulsation modes and their harmonics/combinations, which opens a new window to the future asteroseismology.
A medium- and high-resolution spectroscopic survey of helium-rich hot subdwarfs is being carried out using the Southern African Large Telescope (SALT). Objectives include the discovery of exotic hot subdwarfs and of sequences connecting chemically-pe culiar subdwarfs of different types. The first phase consists of medium-resolution spectroscopy of over 100 stars selected from low-resolution surveys. This paper describes the selection criteria, and the observing, classification and analysis methods. It presents 107 spectral classifications on the MK-like Drilling system and 106 coarse analyses ($T_{rm eff}, log g, log y$) based on a hybrid grid of zero-metal non-LTE and line-blanketed LTE model atmospheres. For 75 stars, atmospheric parameters have been derived for the first time. The sample may be divided into 6 distinct groups including the classical `helium-rich sdO stars with spectral types (Sp) sdO6.5 - sdB1 (74) comprising carbon-rich (35) and carbon-weak (39) stars, very hot He-sdOs with Sp $lesssim$ sdO6 (13), extreme helium stars with luminosity class $lesssim 5$ (5), intermediate helium-rich subdwarfs with helium class 25 -- 35 (8), and intermediate helium-rich subdwarfs with helium class $10 - 25$ (6). The last covers a narrow spectral range (sdB0 -- sdB1) including two known and four candidate heavy-metal subdwarfs. Within other groups are several stars of individual interest, including an extremely metal-poor helium star, candidate double-helium subdwarf binaries, and a candidate low-gravity He-sdO star.
154 - Gajendra Pandey 2014
DY Cen has shown a steady fading of its visual light by about 1 magnitude in the last 40 years suggesting a secular increase in its effective temperature. We have conducted non-LTE and LTE abundance analyses to determine the stars effective temperatu re, surface gravity, and chemical composition using high-resolution spectra obtained over two decades. The derived stellar parameters for three epochs suggest that DY Cen has evolved at a constant luminosity and has become hotter by about 5000 K in 23 years. We show that the derived abundances remain unchanged for the three epochs. The derived abundances of the key elements, including F and Ne, are as observed for the extreme helium stars resulting from a merger of an He white dwarf with a C-O white dwarf. Thus, DY Cen by chemical composition appears to be also a product of a merger of two white dwarfs. This appearance seems to be at odds with the recent suggestion that DY Cen is a single-lined spectroscopic binary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا