ﻻ يوجد ملخص باللغة العربية
We study the properties of coherence concurrence and present a physical explanation analogous to the coherence of assistance. We give an optimal pure state decomposition which attains the coherence concurrence for qubit states. We prove the additivity of coherence concurrence under direct sum operations in another way. Using these results, we calculate analytically the coherence concurrence for X states and show its optimal decompositions. Moreover, we show that the coherence concurrence is exactly twice the convex roof extended negativity of the Schmidt correlated states, thus establishing a direct relation between coherence concurrence and quantum entanglement.
Entanglement and coherence are two essential quantum resources for quantum information processing. A natural question arises of whether there are direct link between them. And by thinking about this question, we propose a new measure for quantum stat
We plot the geometry of several distance-based quantifiers of coherence for Bell-diagonal states. We find that along with both $l_{1}$ norm and relative entropy of coherence changes continuously from zero to one, their surfaces move from the separabl
Entanglement and steering are used to describe quantum inseparabilities. Steerable states form a strict subset of entangled states. A natural question arises concerning how much territory steerability occupies entanglement for a general two-qubit ent
Average entanglement of random pure states of an N x N composite system is analyzed. We compute the average value of the determinant D of the reduced state, which forms an entanglement monotone. Calculating higher moments of the determinant we charac
We find an algebraic formula for the N-partite concurrence of N qubits in an X-matrix. X- matricies are density matrices whose only non-zero elements are diagonal or anti-diagonal when written in an orthonormal basis. We use our formula to study the