ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherence Concurrence for X States

124   0   0.0 ( 0 )
 نشر من قبل Mingjing Zhao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the properties of coherence concurrence and present a physical explanation analogous to the coherence of assistance. We give an optimal pure state decomposition which attains the coherence concurrence for qubit states. We prove the additivity of coherence concurrence under direct sum operations in another way. Using these results, we calculate analytically the coherence concurrence for X states and show its optimal decompositions. Moreover, we show that the coherence concurrence is exactly twice the convex roof extended negativity of the Schmidt correlated states, thus establishing a direct relation between coherence concurrence and quantum entanglement.

قيم البحث

اقرأ أيضاً

Entanglement and coherence are two essential quantum resources for quantum information processing. A natural question arises of whether there are direct link between them. And by thinking about this question, we propose a new measure for quantum stat e that contains concurrence and is called intrinsic concurrence. Interestingly, we discover that the intrinsic concurrence is always complementary to coherence. Note that the intrinsic concurrence is related to the concurrence of a special pure state ensemble. In order to explain the trade-off relation more intuitively, we apply it in some composite systems composed by a single-qubit state coupling four typical noise channels with the aim at illustrating their mutual transformation relationship between their coherence and intrinsic concurrence. This unified trade-off relation will provide more flexibility in exploiting one resource to perform quantum tasks and also provide credible theoretical basis for the interconversion of the two important quantum resources.
98 - Yao-Kun Wang , Lian-He Shao , 2017
We plot the geometry of several distance-based quantifiers of coherence for Bell-diagonal states. We find that along with both $l_{1}$ norm and relative entropy of coherence changes continuously from zero to one, their surfaces move from the separabl e regions to the entangled regions. Based on this fact, it is more illuminating to use an intuitive geometry to explain quantum states with nonzero coherence can be used for entanglement creation, rather than the other way around. We find the necessary and sufficient conditions that quantum discord of Bell-diagonal states equal to its relative entropy of coherence and depict the surfaces of the equality. We give surfaces of relative entropy of coherence for $X$ states. We show the surfaces of dynamics of relative entropy of coherence for Bell-diagonal states under local nondissipative channels and find that all coherence under local nondissipative channels decrease.
Entanglement and steering are used to describe quantum inseparabilities. Steerable states form a strict subset of entangled states. A natural question arises concerning how much territory steerability occupies entanglement for a general two-qubit ent angled state. In this work, we investigate the constraint relation between steerability and concurrence by using two kinds of evolutionary states and randomly generated two-qubit states. By combining the theoretical and numerical proofs, we obtain the upper and lower boundaries of steerability. And the lower boundary can be used as a sufficient criterion for steering detection. Futhermore, we consider a special kind of mixed state transformed by performing an arbitrary unitary operation on Werner-like state, and propose a sufficient steering criterion described by concurrence and purity.
Average entanglement of random pure states of an N x N composite system is analyzed. We compute the average value of the determinant D of the reduced state, which forms an entanglement monotone. Calculating higher moments of the determinant we charac terize the probability distribution P(D). Similar results are obtained for the rescaled N-th root of the determinant, called G-concurrence. We show that in the limit $Ntoinfty$ this quantity becomes concentrated at a single point G=1/e. The position of the concentration point changes if one consider an arbitrary N x K bipartite system, in the joint limit $N,Ktoinfty$, K/N fixed.
We find an algebraic formula for the N-partite concurrence of N qubits in an X-matrix. X- matricies are density matrices whose only non-zero elements are diagonal or anti-diagonal when written in an orthonormal basis. We use our formula to study the dynamics of the N-partite entanglement of N remote qubits in generalized N-party Greenberger-Horne-Zeilinger (GHZ) states. We study the case when each qubit interacts with a partner harmonic oscillator. It is shown that only one type of GHZ state is prone to entanglement sudden death; for the rest, N-partite entanglement dies out momentarily. Algebraic formulas for the entanglement dynamics are given in both cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا