ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of Large-Scale Networked Cyberphysical Systems Using Cryptographic Techniques

132   0   0.0 ( 0 )
 نشر من قبل Yamin Yan
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper aims to create a secure environment for networked control systems composed of multiple dynamic entities and computational control units via networking, in the presence of disclosure attacks. In particular, we consider the situation where some dynamic entities or control units are vulnerable to attacks and can become malicious. Our objective is to ensure that the input and output data of the benign entities are protected from the malicious entities as well as protected when they are transferred over the networks in a distributed environment. Both these security requirements are achieved using cryptographic techniques. However, the use of cryptographic mechanisms brings additional challenges to the design of controllers in the encrypted state space; the closed-loop system gains and states are required to match the specified cryptographic algorithms. In this paper, we propose a methodology for the design of secure networked control systems integrating the cryptographic mechanisms with the control algorithms. The approach is based on the separation principle, with the cryptographic techniques addressing the security requirements and the control algorithms satisfying their performance requirements.



قيم البحث

اقرأ أيضاً

137 - Dajun Du , Changda Zhang , Xue Li 2021
We here investigate secure control of networked control systems developing a new dynamic watermarking (DW) scheme. Firstly, the weaknesses of the conventional DW scheme are revealed, and the tradeoff between the effectiveness of false data injection attack (FDIA) detection and system performance loss is analysed. Secondly, we propose a new DW scheme, and its attack detection capability is interrogated using the additive distortion power of a closed-loop system. Furthermore, the FDIA detection effectiveness of the closed-loop system is analysed using auto/cross covariance of the signals, where the positive correlation between the FDIA detection effectiveness and the watermarking intensity is measured. Thirdly, the tolerance capacity of FDIA against the closed-loop system is investigated, and theoretical analysis shows that the system performance can be recovered from FDIA using our new DW scheme. Finally, experimental results from a networked inverted pendulum system demonstrate the validity of our proposed scheme.
This paper presents a network hardware-in-the-loop (HIL) simulation system for modeling large-scale power systems. Researchers have developed many HIL test systems for power systems in recent years. Those test systems can model both microsecond-level dynamic responses of power electronic systems and millisecond-level transients of transmission and distribution grids. By integrating individual HIL test systems into a network of HIL test systems, we can create large-scale power grid digital twins with flexible structures at required modeling resolution that fits for a wide range of system operating conditions. This will not only significantly reduce the need for field tests when developing new technologies but also greatly shorten the model development cycle. In this paper, we present a networked OPAL-RT based HIL test system for developing transmission-distribution coordinative Volt-VAR regulation technologies as an example to illustrate system setups, communication requirements among different HIL simulation systems, and system connection mechanisms. Impacts of communication delays, information exchange cycles, and computing delays are illustrated. Simulation results show that the performance of a networked HIL test system is satisfactory.
Closed-loop control systems employ continuous sensing and actuation to maintain controlled variables within preset bounds and achieve the desired system output. Intentional disturbances in the system, such as in the case of cyberattacks, can compromi se reachability of control goals, and in several cases jeopardize safety. The increasing connectivity and exposure of networked control to external networks has enabled attackers to compromise these systems by exploiting security vulnerabilities. Attacks against safety-critical control loops can not only drive the system over a trajectory different from the desired, but also cause fatal consequences to humans. In this paper we present a physics-based Intrusion Detection System (IDS) aimed at increasing the security in control systems. In addition to conventional process state estimation for intrusion detection, since the controller cannot be trusted, we introduce a controller state estimator. Additionally, we make our detector context-aware by utilizing sensor measurements from other control loops, which allows to distinguish and characterize disturbances from attacks. We introduce adaptive thresholding and adaptive filtering as means to achieve context-awareness. Together, these methodologies allow detection and localization of attacks in closed-loop controls. Finally, we demonstrate feasibility of the approach by mounting a series of attacks against a networked Direct Current (DC) motor closed-loop speed control deployed on an ECU testbed, as well as on a simulated automated lane keeping system. Among other application domains, this set of approaches is key to support security in automotive systems, and ultimately increase road and passenger safety.
This work studies the problem of controlling the probability density of large-scale stochastic systems, which has applications in various fields such as swarm robotics. Recently, there is a growing amount of literature that employs partial differenti al equations (PDEs) to model the density evolution and uses density feedback to design control laws which, by acting on individual systems, stabilize their density towards to a target profile. In spite of its stability property and computational efficiency, the success of density feedback relies on assuming the systems to be homogeneous first-order integrators (plus white noise) and ignores higher-order dynamics, making it less applicable in practice. In this work, we present a backstepping design algorithm that extends density control to heterogeneous and higher-order stochastic systems in strict-feedback forms. We show that the strict-feedback form in the individual level corresponds to, in the collective level, a PDE (of densities) distributedly driven by a collection of heterogeneous stochastic systems. The presented backstepping design then starts with a density feedback design for the PDE, followed by a sequence of stabilizing design for the remaining stochastic systems. We present a candidate control law with stability proof and apply it to nonholonomic mobile robots. A simulation is included to verify the effectiveness of the algorithm.
Estimating the occurrence of packet losses in a networked control systems (NCS) can be used to improve the control performance and to detect failures or cyber-attacks. This study considers simultaneous estimation of the plant state and the packet los s occurrences at each time step. After formulation of the problem, two solutions are proposed. In the first one, an input-output representation of the NCS model is used to design a recursive filter for estimation of the packet loss occurrences. This estimation is then used for state estimation through Kalman filtering. In the second solution, a state space model of NCS is used to design an estimator for both the plant state and the packet loss occurrences which employs a Kalman filter. The effectiveness of the solutions is shown during an example and comparisons are made between the proposed solutions and another solution based on the interacting multiple model estimation method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا