ﻻ يوجد ملخص باللغة العربية
We consider the matrix regularization of fields on a Riemann surface which couple to gauge fields with a nonvanishing magnetic flux. We show that such fields are described as rectangular matrices in the matrix regularization. We construct the matrix regularization explicitly for the case of the sphere and torus based on the Berezin-Toeplitz quantization, and also discuss a possible generalization to cases with higher genera. We also discuss the matrix version of the Laplacian acting on the rectangular matrices.
We quantize pure 2d Yang-Mills theory on an arbitrary Riemann surface in the gauge where the field strength is diagonal. Twisted sectors originate, as in Matrix string theory, from permutations of the eigenvalues around homotopically non-trivial loop
Knizhnik-Zamolodchikov-Bernard equations for twisted conformal blocks on compact Riemann surfaces with marked points are written explicitly in a general projective structure in terms of correlation functions in the theory of twisted b-c systems. It i
We construct a consistent Kaluza-Klein reduction of $D=11$ supergravity on $Sigma_2times S^4$, where $Sigma_2=S^2,mathbb{R}^2$ or $H^2$, or a quotient thereof, at the level of the bosonic fields. The result is a gauged $N=4$, $D=5$ supergravity theor
We consider compactifications of $6d$ minimal $(D_{N+3},D_{N+3})$ type conformal matter SCFTs on a generic Riemann surface. We derive the theories corresponding to three punctured spheres (trinions) with three maximal punctures, from which one can co
We consider U(n+1) Yang-Mills instantons on the space Sigmatimes S^2, where Sigma is a compact Riemann surface of genus g. Using an SU(2)-equivariant dimensional reduction, we show that the U(n+1) instanton equations on Sigmatimes S^2 are equivalent