ترغب بنشر مسار تعليمي؟ اضغط هنا

Microlensing Analysis for the gravitational lens systems SDSS0924+0219, Q1355-2257, and SDSS1029+2623

59   0   0.0 ( 0 )
 نشر من قبل Karina Rojas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use spectroscopic observations of the gravitationally lensed systems SDSS0924+0219(BC), Q1355-2257(AB), and SDSS1029+2623(BC) to analyze microlensing and dust extinction in the observed components. We detect chromatic microlensing effects in the continuum and microlensing in the broad emission line profiles of the systems SDSS0924+0219(BC), and Q1355-2257(AB). Using magnification maps to simulate microlensing and modeling the emitting region as a Gaussian intensity profile with size $r_s propto lambda ^p$, we obtain the probability density functions for a logarithmic size prior at $lambda_{rest-frame}=3533$ {AA}. In the case of SDSS0924+0219, we obtain: $r_s = 4^{+3}_{-2}$ $sqrt{M/M_{odot}}$ light-days (at $1 sigma$), which is larger than the range of other estimates, and $p = 0.8 pm 0.2$ (at $1 sigma$), which is smaller than predicted by the thin disk theory, but still in agreement with previous results. In the case of Q1355-2257 we obtain (at $1 sigma$): $r_s = 3.6^{+3.0}_{-1.6}$ $sqrt{M/M_{odot}}$ light-days, which is also larger than the theoretical prediction, and $p = 2.0 pm 0.7$ that is in agreement with the theory within errors. SDSS1029+2326 spectra show evidence of extinction, probably produced by a galaxy in the vicinity of image C. Fitting an extinction curve to the data we estimate $Delta E sim 0.2$ in agreement with previous results. We found no evidence of microlensing for this system.



قيم البحث

اقرأ أيضاً

We analyze V, I and H band HST images and two seasons of R-band monitoring data for the gravitationally lensed quasar SDSS0924+0219. We clearly see that image D is a point-source image of the quasar at the center of its host galaxy. We can easily tra ck the host galaxy of the quasar close to image D because microlensing has provided a natural coronograph that suppresses the flux of the quasar image by roughly an order of magnitude. We observe low amplitude, uncorrelated variability between the four quasar images due to microlensing, but no correlated variations that could be used to measure a time delay. Monte Carlo models of the microlensing variability provide estimates of the mean stellar mass in the lens galaxy (0.02 Msun < M < 1.0 Msun), the accretion disk size (the disk temperature is 5 x 10^4 K at 3.0 x 10^14 cm < rs < 1.4 x 10^15 cm), and the black hole mass (2.0 x 10^7 Msun < MBH eta_{0.1}^{-1/2} (L/LE)^{1/2} < 3.3 x 10^8 Msun), all at 68% confidence. The black hole mass estimate based on microlensing is consistent with an estimate of MBH = 7.3 +- 2.4 x 10^7 Msun from the MgII emission line width. If we extrapolate the best-fitting light curve models into the future, we expect the the flux of images A and B to remain relatively stable and images C and D to brighten. In particular, we estimate that image D has a roughly 12% probability of brightening by a factor of two during the next year and a 45% probability of brightening by an order of magnitude over the next decade.
Large scale imaging surveys will increase the number of galaxy-scale strong lensing candidates by maybe three orders of magnitudes beyond the number known today. Finding these rare objects will require picking them out of at least tens of millions of images and deriving scientific results from them will require quantifying the efficiency and bias of any search method. To achieve these objectives automated methods must be developed. Because gravitational lenses are rare objects reducing false positives will be particularly important. We present a description and results of an open gravitational lens finding challenge. Participants were asked to classify 100,000 candidate objects as to whether they were gravitational lenses or not with the goal of developing better automated methods for finding lenses in large data sets. A variety of methods were used including visual inspection, arc and ring finders, support vector machines (SVM) and convolutional neural networks (CNN). We find that many of the methods will be easily fast enough to analyse the anticipated data flow. In test data, several methods are able to identify upwards of half the lenses after applying some thresholds on the lens characteristics such as lensed image brightness, size or contrast with the lens galaxy without making a single false-positive identification. This is significantly better than direct inspection by humans was able to do. (abridged)
We present a new approach in the study of the Initial Mass function (IMF) in external galaxies based on quasar microlensing observations. We use measurements of quasar microlensing magnifications in 24 lensed quasars to estimate the average mass of t he stellar population in the lens galaxies without any a priori assumption on the shape of the IMF. The estimated mean mass of the stars is $langle M rangle =0.16^{+0.05}_{-0.08} M_odot$ (at 68% confidence level). We use this average mass to put constraints into two important parameters characterizing the IMF of lens galaxies: the low-mass slope, $alpha_2$, and the low-mass cutoff, $M_{low}$. Combining these constraints with prior information based on lensing, stellar dynamics, and absorption spectral feature analysis, we calculate the posterior probability distribution for the parameters $M_{low}$ and $alpha_2$. We estimate values for the low-mass end slope of the IMF $langle alpha_2rangle=-2.6pm 0.9$ (heavier than that of the Milky Way) and for the low-mass cutoff $langle M_{low}rangle=0.13pm0.07$. These results are in good agreement with previous studies on these parameters and remain stable against the choice of different suitable priors.
Context. Strong gravitationally lensed quasars are among the most interesting and useful observable extragalactic phenomena. Because their study constitutes a unique tool in various fields of astronomy, they are highly sought, not without difficulty. Indeed, even in this era of all-sky surveys, their recognition remains a great challenge, with barely a few hundred currently known systems. Aims. In this work we aim to detect new strongly lensed quasar candidates in the recently published Gaia Data Release 2 (DR2), which is the highest spatial resolution astrometric and photometric all-sky survey, attaining effective resolutions from 0.4 to 2.2. Methods. We cross-matched a merged list of quasars and candidates with the Gaia DR2 and found 1,839,143 counterparts within 0.5. We then searched matches with more than two Gaia DR2 counterparts within 6. We further narrowed the resulting list using astrometry and photometry compatibility criteria between the Gaia DR2 counterparts. A supervised machine learning method, Extremely Randomized Trees, is finally adopted to assign to each remaining system a probability of being lensed. Results. We report the discovery of three quadruply-imaged quasar candidates that are fully detected in Gaia DR2. These are the most promising new quasar lens candidates from Gaia DR2 and a simple singular isothermal ellipsoid lens model is able to reproduce their image positions to within $sim$1 mas. This letter demonstrates the gravitational lens discovery potential of Gaia.
The positions of images produced by the gravitational lensing of background sources provide unique insight in to galaxy-lens mass distribution. However, even quad images of extended sources are not able to fully characterize the central regions of th e host galaxy. Most previous work has focused either on the radial density profile of the lenses or localized substructure clumps. Here, we concentrate on the azimuthal mass asymmetries near the image circle. The motivation for considering such mass inhomogeneities is that the transition between the central stellar dominated region and the outer dark matter dominated region, though well represented by a power law density profile, is unlikely to be featureless, and encodes information about the dynamical state and assembly history of galaxies. It also happens to roughly coincide with the Einstein radius. We ask if galaxies that have mass asymmetries beyond ellipticity can be modeled with simpler lenses, i.e., can complex mass distributions masquerade as simple elliptical+shear lenses? Our preliminary study indicates that for galaxies with elliptical stellar and dark matter distributions, but with no mass asymmetry, and an extended source filling the diamond caustic, an elliptical+shear lens model can reproduce the images well, thereby hiding the potential complexity of the actual mass distribution. For galaxies with non-zero mass asymmetry, the answer depends on the size and brightness distribution of the source, and its location within the diamond caustic. In roughly half of the cases we considered the mass asymmetries can easily evade detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا