ترغب بنشر مسار تعليمي؟ اضغط هنا

Angular response of a triangular optical cavity analyzed by a linear approximation method

39   0   0.0 ( 0 )
 نشر من قبل Satoshi Tanioka
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A triangular optical cavity is often used as a mode cleaning cavity in precision laser interferometry such as gravitational wave detectors. An alignment sensing and control system for maintaining the alignment of a mode cleaning cavity with respect to the incoming laser beam is critical for detectors performance. Therefore, understanding the behavior of the angular response is vital to both design and commissioning test of the alignment control system. We present a linear approximation approach which not only simplifies the computation but also provides a comprehensive picture of the angular response. The observable degrees of freedom in a triangular cavity is discussed based on the linear approximation.

قيم البحث

اقرأ أيضاً

We derive relationships between various types of small misalignments on a triangular Fabry-Perot cavity and associated geometrical eigenmode changes. We focus on the changes of beam spot positions on cavity mirrors, the beam waist position, and its a ngle. A comparison of analytical and numerical results shows excellent agreement. The results are applicable to any triangular cavity close to an isosceles triangle, with the lengths of two sides much bigger than the other, consisting of a curved mirror and two flat mirrors yielding a waist equally separated from the two flat mirrors. This cavity shape is most commonly used in laser interferometry. The analysis presented here can easily be extended to more generic cavity shapes. The geometrical analysis not only serves as a method of checking a simulation result, but also gives an intuitive and handy tool to visualize the eigenmode of a misaligned triangular cavity.
High finesse Fabry-Perot(FP) cavity is a very important frequency reference for laser stabiliza- tion, and is widely used for applications such as precision measurement, laser cooling of ions or molecules. But the non-linear response of the piezoelec tric ceramic transducer (PZT) in the FP cav- ity limits the performance of the laser stabilization. Measuring and controlling such non-linearity are important. Here we report an in-situ, optical method to characterize this non-linearity by measuring the resonance signals of a dual-frequency laser. The differential measurement makes it insensitive to laser and cavity drifting, and has a very high sensitivity. It can be applied for various applications with PZT, especially in an optical lab.
We theoretically study a strongly-driven optomechanical system which consists of a passive optical cavity and an active mechanical resonator. When the optomechanical coupling strength is varied, phase transitions, which are similar those observed in $mathcal{PT}$-symmetric systems, are observed. We show that the optical transmission can be controlled by changing the gain of the mechanical resonator and loss of the optical cavity mode. Especially, we find that: (i) for balanced gain and loss, optical amplification and absorption can be tuned by changing the optomechanical coupling strength through a control field; (ii) for unbalanced gain and loss, even with a tiny mechanical gain, both optomechanically-induced transparency and anomalous dispersion can be observed around a critical point, which exhibits an ultra-long group delay. The time delay $tau$ can be optimized by regulating the optomechanical coupling strength through the control field and improved up to several orders of magnitude ($tausim2$ $mathrm{ms}$) compared to that of conventional optomechanical systems ($tausim1$ $mumathrm{s}$). The presence of mechanical gain makes the group delay more robust to environmental perturbations. Our proposal provides a powerful platform to control light transport using a $mathcal{PT}$-symmetric-like optomechanical system.
We extend the recently developed classical theory for the optical response of a single-layer crystal to bilayers. We account for the interaction between the two atomic planes and the multiple reflections inside the crystals. We show how to define a g lobal susceptibility meaningful for the bilayer crystal and how its expression varies compared to the single-layer case. We compute both the local and the macroscopic fields which allow us for a direct comparison with experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا