ﻻ يوجد ملخص باللغة العربية
The persistently mysterious deviations from unity of the ratio of nuclear target structure functions to those of deuterium as measured in deep inelastic scattering (often termed the EMC Effect) have become the canonical observable for studies of nuclear medium modifications to free nucleon structure in the valence regime. The structure function of the free proton is well known from numerous experiments spanning decades. The free neutron structure function, however, has remained difficult to access. Recently it has been extracted in a systematic study of the global data within a parton distribution function extraction framework and is available from the CTEQ-Jefferson Lab (CJ) Collaboration. Here, we leverage the latter to introduce a new method to study the EMC Effect in nuclei by re-examining existing data in light of the the magnitude of the medium modifications to the free neutron and proton structure functions independently. From the extraction of the free neutron from world data, it is possible to examine the nuclear effects in deuterium and their contribution to our interpretation of the EMC Effect. In this study, we observe that the ratio of the deuteron to the sum of the free neutron and proton structure functions has some $x_{B}$ and $Q^{2}$ dependencies that impact the magnitude of the EMC Effect as typically observed. Specifically, different EMC slopes are obtained when data from different $x_{B}$ and $Q^{2}$ values are utilized. While a linear correlation persists between the EMC and short range correlation effects, the slope is modified when deuteron nuclear effects are removed.
Measurements of the proton and deuteron $F_2$ structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range $0.06 < Q^2 < 2.8$ GeV$^2$, and Bjorken $x$ values from 0.009 to 0.45, thus extending the
Using data from the recent BONuS experiment at Jefferson Lab, which utilized a novel spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality i
We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-funct
Intermediate energy single-neutron removal from $^{31}$Mg has been employed to investigate the transition into the N=20 island of inversion. Levels up to 5~MeV excitation energy in $^{30}$Mg were populated and spin-parity assignments were inferred fr
The recent x>1 (e,e) and correlation experiments at momentum transfer Q^2 ge 2 GeV^2 confirm presence of short-range correlations (SRC) in nuclei mostly build of nucleons. Recently we evaluated in a model independent way the dominant photon contrib