ﻻ يوجد ملخص باللغة العربية
Context. The fate of a massive star during the latest stages of its evolution is highly dependent on its mass-loss rate/geometry and therefore knowing the geometry of the circumstellar material close to the star and its surroundings is crucial. Aims. We aim to study the nature (i.e. geometry, rates) of mass-loss episodes. In this context, yellow hypergiants are great targets. Methods. We analyse a large set of optical/near-infrared data, in spectroscopic and photometric (X-shooter/VLT), spectropolarimetric (ISIS/WHT), and interferometric GRAVITY-AMBER/VLTI) modes, toward the yellow hypergiant IRAS 17163-3907. We present the first model-independent reconstructed images of IRAS 17163-3907 at these wavelengths at milli-arcsecond scales. Lastly, we apply a 2D radiative transfer model to fit the dereddened photometry and the radial profiles of published VISIR images at 8.59 {mu}m, 11.85 {mu}m and 12.81 {mu}m simultaneously, adopting the revised Gaia distance (DR2). Results. The interferometric observables around 2 {mu}m show that the Br{gamma} emission is more extended and asymmetric than the Na i and the continuum emission. In addition to the two known shells surrounding IRAS 17163-3907 we report on the existence of a third hot inner shell with a maximum dynamical age of only 30 yr. Conclusions. The interpretation of the presence of Na i emission at closer distances to the star compared to Br{gamma} has been a challenge in various studies. We argue that the presence of a pseudophotosphere is not needed, but it is rather an optical depth effect. The three observed distinct mass-loss episodes are characterised by different mass-loss rates and can inform the theories on mass-loss mechanisms, which is a topic still under debate. We discuss these in the context of photospheric pulsations and wind bi-stability mechanisms.
Yellow hypergiants are rare and represent a fast evolutionary stage of massive evolved stars. That evolutionary phase is characterised by a very intense mass loss, the understanding of which is still very limited. Here we report ALMA Compact Array ob
The evolution of massive stars surviving the red supergiant (RSG) stage remains unexplored due to the rarity of such objects. The yellow hypergiants (YHGs) appear to be the warm counterparts of post-RSG classes located near the Humphreys-Davidson upp
We initiated long-term optical interferometry monitoring of the diameters of unstable yellow hypergiants (YHG) with the goal of detecting both the long-term evolution of their radius and shorter term formation related to large mass-loss events. We ob
We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with SWIFT ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to
We present extensively dense observations of the super-Chandrasekhar supernova (SC SN) candidate SN 2012dn from $-11$ to $+140$ days after the date of its $B$-band maximum in the optical and near-infrared (NIR) wavelengths conducted through the OISTE