ﻻ يوجد ملخص باللغة العربية
Decentralized coordination of a robot swarm requires addressing the tension between local perceptions and actions, and the accomplishment of a global objective. In this work, we propose to learn decentralized controllers based on solely raw visual inputs. For the first time, that integrates the learning of two key components: communication and visual perception, in one end-to-end framework. More specifically, we consider that each robot has access to a visual perception of the immediate surroundings, and communication capabilities to transmit and receive messages from other neighboring robots. Our proposed learning framework combines a convolutional neural network (CNN) for each robot to extract messages from the visual inputs, and a graph neural network (GNN) over the entire swarm to transmit, receive and process these messages in order to decide on actions. The use of a GNN and locally-run CNNs results naturally in a decentralized controller. We jointly train the CNNs and the GNN so that each robot learns to extract messages from the images that are adequate for the team as a whole. Our experiments demonstrate the proposed architecture in the problem of drone flocking and show its promising performance and scalability, e.g., achieving successful decentralized flocking for large-sized swarms consisting of up to 75 drones.
We demonstrate the possibility of learning drone swarm controllers that are zero-shot transferable to real quadrotors via large-scale multi-agent end-to-end reinforcement learning. We train policies parameterized by neural networks that are capable o
This paper proposes a novel end-to-end deep learning framework that simultaneously identifies demand baselines and the incentive-based agent demand response model, from the net demand measurements and incentive signals. This learning framework is mod
We propose to address quadrupedal locomotion tasks using Reinforcement Learning (RL) with a Transformer-based model that learns to combine proprioceptive information and high-dimensional depth sensor inputs. While learning-based locomotion has made g
This paper presented a deep reinforcement learning method named Double Deep Q-networks to design an end-to-end vision-based adaptive cruise control (ACC) system. A simulation environment of a highway scene was set up in Unity, which is a game engine
Decentralized multi-agent control has broad applications, ranging from multi-robot cooperation to distributed sensor networks. In decentralized multi-agent control, systems are complex with unknown or highly uncertain dynamics, where traditional mode