ﻻ يوجد ملخص باللغة العربية
In this paper, we consider a transmission scheduling problem, in which several streams of status update packets with diverse priority levels are sent through a shared channel to their destinations. We introduce a notion of Lexicographic age optimality, or simply lex-age-optimality, to evaluate the performance of multi-class status update policies. In particular, a lex-age-optimal scheduling policy first minimizes the Age of Information (AoI) metrics for high-priority streams, and then, within the set of optimal policies for high-priority streams, achieves the minimum AoI metrics for low-priority streams. We propose a new scheduling policy named Preemptive Priority, Maximum Age First, Last-Generated, First-Served (PP-MAF-LGFS), and prove that the PP-MAF-LGFS scheduling policy is lex-age-optimal. This result holds (i) for minimizing any time-dependent, symmetric, and non-decreasing age penalty function; (ii) for minimizing any non-decreasing functional of the stochastic process formed by the age penalty function; and (iii) for the cases where different priority classes have distinct arrival traffic patterns, age penalty functions, and age penalty functionals. For example, the PP-MAF-LGFS scheduling policy is lex-age-optimal for minimizing the mean peak age of a high-priority stream and the time-average age of a low-priority stream. Numerical results are provided to illustrate our theoretical findings.
We consider the problem of optimizing the freshness of status updates that are sent from a large number of low-power sources to a common access point. The source nodes utilize carrier sensing to reduce collisions and adopt an asynchronized sleep-wake
We study timely status updates of a real-time system in an adversarial setting. The system samples a physical process, and sends the samples from the source (e.g., a sensor) to the destination (e.g, a control center) through a channel. For real-time
We consider a joint sampling and scheduling problem for optimizing data freshness in multi-source systems. Data freshness is measured by a non-decreasing penalty function of emph{age of information}, where all sources have the same age-penalty functi
In this work, we derive optimal transmission policies in an energy harvesting status update system. The system monitors a stochastic process which can be either in a normal or in an alarm state of operation. We capture the freshness of status updates
We study a hypothesis testing problem in which data is compressed distributively and sent to a detector that seeks to decide between two possible distributions for the data. The aim is to characterize all achievable encoding rates and exponents of th