ﻻ يوجد ملخص باللغة العربية
We present our results of the $K_{l3}$ form factors on the volume whose spatial extent is more than $L=$10 fm, with the physical pion and kaon masses using the stout-smearing clover $N_f = 2+1$ quark action and Iwasaki gauge action at $a^{-1}approx2.3$ GeV. The $K_{l3}$ form factor at zero momentum transfer is obtained from fit based on the next-to-leading (NLO) formula in SU(3) chiral perturbation theory. We estimate systematic errors of the form factor, mainly coming from the finite lattice spacing effect. We also determine the value of $|V_{us}|$ by combining our result with the experiment and check the consistency with the standard model prediction. The result is compared with the previous lattice calculations.
We present the calculation of the $K_{l3}$ form factors with $N_f = 2 + 1$ nonperturbatively $O(a)$-improved Wilson quark action and Iwasaki gauge action at the physical point on a large volume of (10.9 fm)$^3$ at one lattice spacing of $a = 0.085$ f
We present results for the isovector nucleon form factors measured on a $96^4$ lattice at almost the physical pion mass with a lattice spacing of 0.085 fm in 2+1 flavor QCD. The configurations are generated with the stout-smeared $O(a)$-improved Wils
We present a direct calculation for the first derivative of the isovector nucleon form factors with respect to the momentum transfer $q^2$ using the lower moments of the nucleon 3-point function in the coordinate space. Our numerical simulations are
We study the strangeness electromagnetic form factors of the nucleon from the N_f=2+1 clover fermion lattice QCD calculation. The disconnected insertions are evaluated using the Z(4) stochastic method, along with unbiased subtractions from the hoppin
We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the stra