ﻻ يوجد ملخص باللغة العربية
We propose a new mechanism to accurately answer a user-provided set of linear counting queries under local differential privacy (LDP). Given a set of linear counting queries (the workload) our mechanism automatically adapts to provide accuracy on the workload queries. We define a parametric class of mechanisms that produce unbiased estimates of the workload, and formulate a constrained optimization problem to select a mechanism from this class that minimizes expected total squared error. We solve this optimization problem numerically using projected gradient descent and provide an efficient implementation that scales to large workloads. We demonstrate the effectiveness of our optimization-based approach in a wide variety of settings, showing that it outperforms many competitors, even outperforming existing mechanisms on the workloads for which they were intended.
In this work we explore the problem of answering a set of sum queries under Differential Privacy. This is a little understood, non-trivial problem especially in the case of numerical domains. We show that traditional techniques from the literature ar
Differentially private algorithms for answering sets of predicate counting queries on a sensitive database have many applications. Organizations that collect individual-level data, such as statistical agencies and medical institutions, use them to sa
In this work we describe the High-Dimensional Matrix Mechanism (HDMM), a differentially private algorithm for answering a workload of predicate counting queries. HDMM represents query workloads using a compact implicit matrix representation and explo
Private collection of statistics from a large distributed population is an important problem, and has led to large scale deployments from several leading technology companies. The dominant approach requires each user to randomly perturb their input,
LDP (Local Differential Privacy) has been widely studied to estimate statistics of personal data (e.g., distribution underlying the data) while protecting users privacy. Although LDP does not require a trusted third party, it regards all personal dat