ترغب بنشر مسار تعليمي؟ اضغط هنا

Superfluid flow of polaron polaritons above Landaus critical velocity

98   0   0.0 ( 0 )
 نشر من قبل Kristian Knakkergaard Nielsen
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a theory for the interaction of light with superfluid optical media, describing the motion of quantum impurities that are created and dragged through the liquid by propagating photons. It is well known that a mobile impurity suffers dissipation due to phonon emission as soon as it moves faster than the speed of sound in the superfluid - Landaus critical velocity. Surprisingly we find that in the present hybrid light-matter setting, polaritonic impurities can be protected against environmental decoherence and be allowed to propagate well above the Landau velocity without jeopardizing the superfluid response of the medium.



قيم البحث

اقرأ أيضاً

Superfluidity and superconductivity have been studied widely since the last century in many different contexts ranging from nuclear matter to atomic quantum gases. The rigidity of these systems with respect to external perturbations results in fricti onless motion for superfluids and resistance-free electric current in superconductors. This peculiar behaviour is lost when external perturbations overcome a critical threshold, i.e. above a critical magnetic field or a critical current for superconductors. In superfluids, such as liquid helium or ultracold gases, the corresponding quantities are critical rotation rate and critical velocity, respectively. Enhancing the critical values is of great fundamental and practical value. Here we demonstrate that superfluidity can be achieved for flow above the critical velocity through quantum interference induced resonances. This has far reaching consequences for the fundamental understanding of superfluidity and superconductivity and opens up new application possibilities in quantum metrology, e.g. in rotation sensing.
We numerically model experiments on the superfluid critical velocity of an elongated, harmonically trapped Bose-Einstein condensate as reported by [P. Engels and C. Atherton, Phys. Rev. Lett. 99, 160405 (2007)]. These experiments swept an obstacle fo rmed by an optical dipole potential through the long axis of the condensate at constant velocity. Their results found an increase in the resulting density fluctuations of the condensate above an obstacle velocity of $vapprox 0.3$ mm/s, suggestive of a superfluid critical velocity substantially less than the average speed of sound. However, our analysis shows that the that the experimental observations of Engels and Atherton are in fact consistent with a superfluid critical velocity equal to the local speed of sound. We construct a model of energy transfer to the system based on the local density approximation to explain the experimental observations, and propose and simulate experiments that sweep potentials through harmonically trapped condensates at a constant fraction of the local speed of sound. We find that this leads to a sudden onset of excitations above a critical fraction, in agreement with the Landau criterion for superfluidity.
The mean-field Gross-Pitaevskii equation with repulsive interactions exhibits frictionless flow when stirred by an obstacle below a critical velocity. Here we go beyond the mean-field approximation to examine the influence of quantum fluctuations on this threshold behaviour in a one-dimensional Bose gas in a ring. Using the truncated Wigner approximation, we perform simulations of ensembles of trajectories where the Bose gas is stirred with a repulsive obstacle below the mean-field critical velocity. We observe the probabilistic formation of grey solitons which subsequently decay, leading to an increase in the momentum of the fluid. The formation of the first soliton leads to a soliton cascade, such that the fluid rapidly accelerates to minimise the speed difference with the obstacle. We measure the initial rate of momentum transfer, and relate it to macroscopic tunnelling between quantised flow states in the ring.
Critical velocities have been observed in an ultracold superfluid Fermi gas throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at unitarity demonstrates that superfluidity is most robust for resonant atomic interactions. Cri tical velocities were determined from the abrupt onset of dissipation when the velocity of a moving one dimensional optical lattice was varied. The dependence of the critical velocity on lattice depth and on the inhomogeneous density profile was studied.
158 - Romain Dubessy 2012
We analyze the excitation spectrum of a superfluid Bose-Einstein condensate rotating in a ring trap. We identify two important branches of the spectrum related to outer and inner edge surface modes that lead to the instability of the superfluid. Depe nding on the initial circulation of the annular condensate, either the outer or the inner modes become first unstable. This instability is crucially related to the superfluid nature of the rotating gas. In particular we point out the existence of a maximal circulation above which the superflow decays spontaneously, which cannot be explained by invoking the average speed of sound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا