ﻻ يوجد ملخص باللغة العربية
The goal of this paper is to show that a single robust estimator of the mean of a multivariate Gaussian distribution can enjoy five desirable properties. First, it is computationally tractable in the sense that it can be computed in a time which is at most polynomial in dimension, sample size and the logarithm of the inverse of the contamination rate. Second, it is equivariant by translations, uniform scaling and orthogonal transformations. Third, it has a high breakdown point equal to $0.5$, and a nearly-minimax-rate-breakdown point approximately equal to $0.28$. Fourth, it is minimax rate optimal, up to a logarithmic factor, when data consists of independent observations corrupted by adversarially chosen outliers. Fifth, it is asymptotically efficient when the rate of contamination tends to zero. The estimator is obtained by an iterative reweighting approach. Each sample point is assigned a weight that is iteratively updated by solving a convex optimization problem. We also establish a dimension-free non-asymptotic risk bound for the expected error of the proposed estimator. It is the first result of this kind in the literature and involves only the effective rank of the covariance matrix. Finally, we show that the obtained results can be extended to sub-Gaussian distributions, as well as to the cases of unknown rate of contamination or unknown covariance matrix.
We discuss the possibilities and limitations of estimating the mean of a real-valued random variable from independent and identically distributed observations from a non-asymptotic point of view. In particular, we define estimators with a sub-Gaussia
This paper deals with a new Bayesian approach to the standard one-sample $z$- and $t$- tests. More specifically, let $x_1,ldots,x_n$ be an independent random sample from a normal distribution with mean $mu$ and variance $sigma^2$. The goal is to test
Hotellings T-squared test is a classical tool to test if the normal mean of a multivariate normal distribution is a specified one or the means of two multivariate normal means are equal. When the population dimension is higher than the sample size, t
In this paper, we consider an inference problem for the first order autoregressive process driven by a long memory stationary Gaussian process. Suppose that the covariance function of the noise can be expressed as $abs{k}^{2H-2}$ times a function slo
We study parameter identifiability of directed Gaussian graphical models with one latent variable. In the scenario we consider, the latent variable is a confounder that forms a source node of the graph and is a parent to all other nodes, which corres