ﻻ يوجد ملخص باللغة العربية
Ultrahigh-intensity lasers (10$^{18}$-10$^{22}$W/cm$^{2}$) have opened up new perspectives in many fields of research and application [1-5]. By irradiating a thin foil, an ultrahigh accelerating field (10$^{12}$ V/m) can be formed and multi-MeV ions with unprecedentedly high intensity (10$^{10}$A/cm$^2$) in short time scale ($sim$ps) are produced [6-14]. Such beams provide new options in radiography [15], high-yield neutron sources [16], high-energy-density-matter generation [17], and ion fast ignition [18,19]. An accurate understanding of the nonlinear behavior of beam transport in matter is crucial for all these applications. We report here the first experimental evidence of anomalous stopping of a laser-generated high-current proton beam in well-characterized dense ionized matter. The observed stopping power is one order of magnitude higher than single-particle slowing-down theory predictions. We attribute this phenomenon to collective effects where the intense beam drives an decelerating electric field approaching 1GV/m in the dense ionized matter. This finding will have considerable impact on the future path to inertial fusion energy.
A method of generating spin polarized proton beams from a gas jet by using a multi-petawatt laser is put forward. With currently available techniques of producing pre-polarized monatomic gases from photodissociated hydrogen halide molecules and petaw
Electron-positron pairs, produced in intense laser-solid interactions, are diagnosed using magnetic spectrometers with image plates, such as the National Ignition Facility (NIF) Electron Positron Proton Spectrometers (EPPS). Although modeling can hel
Here, we demonstrate the radiative polarization of high-energy electron beams in collisions with ultrashort pulsed bi-chromatic laser fields. Employing a Boltzmann kinetic approach for the electron distribution allows us to simulate the beam polariza
We report experimental evidence that multi-MeV protons accelerated in relativistic laser-plasma interactions are modulated by strong filamentary electromagnetic fields. Modulations are observed when a preplasma is developed on the rear side of a $mu$
Dimensional effects in particle-in-cell (PIC) simulation of target normal sheath acceleration (TNSA) of protons are considered. As the spatial divergence of the laser-accelerated hot sheath electrons and the resulting space-charge electric field on t