ترغب بنشر مسار تعليمي؟ اضغط هنا

Calibration Method and Uncertainty for the Primordial Inflation Explorer (PIXIE)

60   0   0.0 ( 0 )
 نشر من قبل Alan Kogut
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept to measure cosmological signals from both linear polarization of the cosmic microwave background and spectral distortions from a perfect blackbody. The targeted measurement sensitivity is 2--4 orders of magnitude below competing astrophysical foregrounds, placing stringent requirements on instrument calibration. An on-board blackbody calibrator presents a polarizing Fourier transform spectrometer with a known signal to enable conversion of the sampled interference fringe patterns from telemetry units to physical units. We describe the instrumentation and operations needed to calibrate PIXIE, derive the expected uncertainty for the intensity, polarization, and frequency scales, and show the effect of calibration uncertainty in the derived cosmological signals. In-flight calibration is expected to be accurate to a few parts in $10^6$ at frequencies dominated by the CMB, and a few parts in $10^4$ at higher frequencies dominated by the diffuse dust foreground.

قيم البحث

اقرأ أيضاً

The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne telescope designed to measure the polarization of the Cosmic Microwave Background on large angular scales. PIPER will map 85% of the sky at 200, 270, 350, and 600 GHz over a se ries of 8 conventional balloon flights from the northern and southern hemispheres. The first science flight will use two 32x40 arrays of backshort-under-grid transition edge sensors, multiplexed in the time domain, and maintained at 100 mK by a Continuous Adiabatic Demagnetization Refrigerator. Front-end cryogenic Variable-delay Polarization Modulators provide systematic control by rotating linear to circular polarization at 3 Hz. Twin telescopes allow PIPER to measure Stokes I, Q, U, and V simultaneously. The telescope is maintained at 1.5 K in an LHe bucket dewar. Cold optics and the lack of a warm window permit sensitivity at the sky-background limit. The ultimate science target is a limit on the tensor-to-scalar ratio of r ~ 0.007, from the reionization bump to l ~ 300. PIPERs first flight will be from the Northern hemisphere, and overlap with the CLASS survey at lower frequencies. We describe the current status of the PIPER instrument.
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. BICEP2 recently reporte d a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. PIPER is currently the only suborbital instrument capable of fully testing and extending the BICEP2 results by measuring the B-mode power spectrum on angular scales $theta$ = ~0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. PIPER will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 mK. Polarization sensitivity and systematic control are provided by front-end Variable-delay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each pointing. We describe the PIPER instrument and progress towards its first flight.
The Primordial Inflation Polarization Explorer (PIPER) is a stratospheric balloon payload to measure polarization of the cosmic microwave background. Twin telescopes mounted within an open-aperture bucket dewar couple the sky to bolometric detector a rrays. We reduce detector loading and photon noise by cooling the entire optical chain to 1.7 K or colder. A set of fountain-effect pumps sprays superfluid liquid helium onto each optical surface, producing helium flows of 50--100 cm^3 / s at heights up to 200 cm above the liquid level. We describe the fountain-effect pumps and the cryogenic performance of the PIPER payload during two flights in 2017 and 2019.
Measuring the faint polarization signal of the cosmic microwave background (CMB) not only requires high optical throughput and instrument sensitivity but also control over systematic effects. Polarimetric cameras or receivers used in this setting oft en employ dielectric vacuum windows, filters, or lenses to appropriately prepare light for detection by cooled sensor arrays. These elements in the optical chain are typically designed to minimize reflective losses and hence improve sensitivity while minimizing potential imaging artifacts such as glint and ghosting. The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument designed to measure the polarization of the CMB radiation at the largest angular scales and characterize astrophysical dust foregrounds. PIPERs twin telescopes and detector systems are submerged in an open-aperture liquid helium bucket dewar. A fused-silica window anti-reflection (AR) coated with polytetrafluoroethylene (PTFE) is installed on the vacuum cryostat that houses the cryogenic detector arrays. Light passes from the skyward portions of the telescope to the detector arrays though this window, which utilizes an indium seal to prevent superfluid helium leaks into the vacuum cryostat volume. The AR coating implemented reduces reflections from each interface to <1% compared to ~10% from an uncoated window surface. The AR coating procedure and room temperature optical measurements of the window are presented. The indium vacuum sealing process is also described in detail and test results characterizing its integrity to superfluid helium leaks are provided.
The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With $sim30$ times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا