ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum walk versus classical wave: Distinguishing ground states of quantum magnets by spacetime dynamics

87   0   0.0 ( 0 )
 نشر من قبل Michael Sentef
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the wavepacket spreading after a single spin flip in prototypical two-dimensional ferromagnetic and antiferromagnetic quantum spin systems. We find characteristic spatial magnon density profiles: While the ferromagnet shows a square-shaped pattern reflecting the underlying lattice structure, as exhibited by quantum walkers, the antiferromagnet shows a circular-shaped pattern which hides the lattice structure and instead resembles a classical wave pattern. We trace these fundamentally different behaviors back to the distinctly different magnon energy-momentum dispersion relations and also provide a real-space interpretation. Our findings point to new opportunities for real-time, real-space imaging of quantum magnets both in materials science and in quantum simulators.

قيم البحث

اقرأ أيضاً

Classical reversible cellular automata (CAs), which describe the discrete-time dynamics of classical degrees of freedom in a finite state-space, can exhibit exact, nonthermal quantum eigenstates despite being classically chaotic. We show that every c lassical CA defines a family of generically non-integrable, periodically-driven (Floquet) quantum dynamics with exact, nonthermal eigenstates. These Floquet dynamics are nonergodic in the sense that certain product states on a periodic classical orbit fail to thermalize, while generic initial states thermalize as expected in a quantum chaotic system. We demonstrate that some signatures of these effects can be probed in quantum simulators based on Rydberg atoms in the blockade regime. These results establish classical CAs as parent models for a class of quantum chaotic systems with rare nonthermal eigenstates.
We have realized a quantum walk in momentum space with a rubidium spinor Bose-Einstein condensate by applying a periodic kicking potential as a walk operator and a resonant microwave pulse as a coin toss operator. The generated quantum walks appear t o be stable for up to ten steps and then quickly transit to classical walks due to spontaneous emissions induced by laser beams of the walk operator. We investigate these quantum to classical walk transitions by introducing well controlled spontaneous emissions with an external light source during quantum walks. Our findings demonstrate a scheme to control the robustness of the quantum walks and can also be applied to other cold atom experiments involving spontaneous emissions.
The universal quantum computation model based on quantum walk by Childs has opened the door for a new way of studying the limitations and advantages of quantum computation, as well as for its intermediate-term simulation. In recent years, the growing interest in noisy intermediate-scale quantum computers (NISQ) has lead to intense efforts being directed at understanding the computational advantages of open quantum systems. In this work, we extend the quantum walk model to open noisy systems in order to provide such a tool for the study of NISQ computers. Our method does not use explicit purification, and allows to ignore the environment degrees of freedom and get direct and much more efficient access to the entanglement properties of the system. In our representation, the quantum walk amplitudes represent elements in a density matrix rather than the wavefunction of a pure state. Despite the non-trivial manifestation of the normalization requirement in this setting, we model the application of general unitary gates and nonunitary channels, with an explicit implementation protocol for channels that are commonly used in noise models.
Quantum walks are processes that model dynamics in coherent systems. Their experimental implementations proved key to unveil novel phenomena in Floquet topological insulators. Here we realize a photonic quantum walk in the presence of a synthetic gau ge field, which mimics the action of an electric field on a charged particle. By tuning the energy gaps between the two quasi-energy bands, we investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions. When both gaps at quasi-energy values 0 and $pi$ are vanishingly small, the Floquet dynamics follows a ballistic spreading.
50 - V. Popsueva 2005
We report calculations for electronic ground states of parabolically confined quantum dots for up to 30 electrons based on the quantum Monte Carlo method. Effects of the electron-electron interaction and the response to a magnetic field are exposed. The wavefunctions and the ground state energies are compared with purely classical calculations performed with a comprehensive Molecular Dynamics code. For the chosen well parameters a close correspondence in the overall shape of electron density distribution is found even for small number of electrons, while the detailed radial distributions show the effects of Pauli principle in the quantal case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا