ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracing the anemic stellar halo of M101

277   0   0.0 ( 0 )
 نشر من قبل In Sung Jang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Models of galaxy formation in a cosmological context predict that massive disk galaxies should have structured extended stellar halos. Recent studies in integrated light, however, report a few galaxies, including the nearby disk galaxy M101, that have no measurable stellar halos to the detection limit. We aim to quantify the stellar content and structure of M101s outskirts by resolving its stars. We present the photometry of its stars based on deep F606W and F814W images taken with Hubble Space Telescope as part of the GHOSTS survey. The constructed CMDs of stars reach down to two magnitudes below the tip of the red giant branch. We derived radial number density profiles of the bright red giant branch (RGB) stars. The mean color of the RGB stars at $R sim$ 40 -- 60 kpc is similar to those of metal-poor globular clusters in the Milky Way. We also derived radial surface brightness profiles using the public image data provided by the Dragonfly team. Both the radial number density and surface brightness profiles were converted to radial mass density profiles and combined. We find that the mass density profiles show a weak upturn at the very outer region, where surface brightness is as faint as $mu_gapprox 34$ mag arcsec$^{-1}$. An exponential disk + power-law halo model on the mass density profiles finds the total stellar halo mass of $M_{halo}=8.2_{-2.2}^{+3.5}times 10^7M_odot$. The total stellar halo mass does not exceed $M_{halo} = 3.2 times 10^8$ $M_{odot}$ when strongly truncated disk models are considered. Combining the halo mass with the total stellar mass of M101, we obtain the stellar halo mass fraction of $M_{halo}/M_{gal} = 0.20_{-0.08}^{+0.10}%$ with an upper limit of 0.78%. We compare the halo properties of M101 with those of six GHOSTS survey galaxies as well as the Milky Way and M31 and find that M101 has an anemic stellar halo.

قيم البحث

اقرأ أيضاً

We use deep Hubble Space Telescope imaging in the outskirts of the nearby spiral M101 to study stellar populations in the galaxys outer disk and halo. Our ACS field lies 17.6 arcmin (36 kpc) from the center of M101 and targets the blue NE Plume of M1 01s outer disk, while the parallel WFC3 field lies at a distance of 23.3 arcmin (47 kpc) to sample the galaxys stellar halo. The WFC3 halo field shows a well-defined red giant branch characterized by low metallicity ([M/H]=-1.7 $pm$ 0.2), with no evidence of young stellar populations. In contrast, the ACS disk field shows multiple stellar populations, including a young main sequence, blue and red helium burning stars, and old RGB and AGB populations. The mean metallicity of these disk stars is quite low: [M/H]=-1.3 $pm$ 0.2 for the RGB population, and -1.15 $pm$ 0.2 for the younger helium burning sequences. Of particular interest is a bunching of stars along the BHeB sequence, indicative of an evolving cohort of massive young stars. We show that the young stellar populations in this field are well-described by a decaying burst of star formation that peaked ~ 300-400 Myr ago, along with a more extended star formation history to produce the older RGB and AGB populations. These results confirm and extend the results from our previous deep surface photometry of M101s outer disk, providing an important cross-check on stellar population studies using resolved stellar populations versus integrated light photometry. We discuss our results in the context of halo formation models and the interaction history of M101 and its companions.
We have analyzed new HST/ACS and HST/WFC3 imaging in F475W and F814W of two previously-unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31s inner stellar halo. Both of these new datasets reach a depth of at least F814W$<$27 and clearly detect the blue horizontal branch (BHB) of the field as a distinct feature of the color-magnitude diagram. We measure the density of BHB stars and the ratio of BHB to red giant branch stars in each field using identical techniques to our previous work. We find excellent agreement with our previous measurement of a power-law for the 2-D projected surface density with an index of 2.6$^{+0.3}_{-0.2}$ outside of 3 kpc, which flattens to $alpha <$1.2 inside of 3 kpc. Our findings confirm our previous suggestion that the field BHB stars in M31 are part of the halo population. However, the total halo profile is now known to differ from this BHB profile, which suggests that we have isolated the metal-poor component. This component appears to have an unbroken power-law profile from 3-150 kpc but accounts for only about half of the total halo stellar mass. Discrepancies between the BHB density profile and other measurements of the inner halo are therefore likely due to the different profile of the metal-rich halo component, which is not only steeper than the profile of the met al-poor component, but also has a larger core radius. These profile differences also help to explain the large ratio of BHB/RGB stars in our observations.
Rapid advance has been made recently in accurate distance measurements for nearby ($D < 11$ Mpc) galaxies based on the magnitude of the tip of red giant branch stars resolved with the Hubble Space Telescope. We use observational properties of galaxie s presented in the last version of Updated Nearby Galaxy Catalog to derive a halo mass of luminous galaxies via orbital motion of their companions. Our sample contains 298 assumed satellites with known radial velocities around 25 Milky Way-like massive galaxies and 65 assumed satellites around 47 fainter dominant galaxies. The average total mass-to-$K$-band luminosity ratio is $31pm6 M_odot/L_odot$ for the luminous galaxies, increasing up to $sim200 M_odot/L_odot$ toward dwarfs. The bulge-dominated luminous galaxies are characterized with $langle{}M_T/L_Krangle = 73pm15 M_odot/L_odot$, while the disc-dominated spirals have $langle{}M_T/L_Krangle = 17.4pm2.8 M_odot/L_odot$. We draw attention to a particular subsample of luminous spiral galaxies with signs of declining rotation curve, which have a radial velocity dispersion of satellites less than 55 km/s and a poor dark matter halo with $langle{}M_T/L_Krangle = 5.5pm1.1 M_odot/L_odot$. We note that a fraction of quenched (dSph, dE) companions around Milky Way-like galaxies decreases with their linear projected separation as $0.75 exp(-R_p/350,mathrm{kpc})$.
We have obtained deep Hubble Space Telescope (HST) imaging of 19 dwarf galaxy candidates in the vicinity of M101. Advanced Camera for Surveys HST photometry for 2 of these objects showed resolved stellar populations and Tip of the Red Giant Branch de rived distances consistent with M101 group membership. The other 17 were found to have no resolved stellar populations, meaning they are background low surface brightness (LSB) galaxies. It is notable that many LSB objects which had previously been assumed to be M101 group members based on projection have been shown to be background objects, indicating the need for future diffuse dwarf surveys to be careful in drawing conclusions about group membership without robust distance estimates. In this work we update the satellite luminosity function of M101 based on the presence of these new objects down to M_V=-8.2. M101 is a sparsely populated system with only 9 satellites down to M_V~-8, as compared to 26 for M31 and 24.5pm7.7 for the median local Milky Way (MW)-mass host. This makes M101 the sparsest group probed to this depth, though M94 is even sparser to the depth it has been examined (M_V=-9.1). M101 and M94 share several properties that mark them as unusual compared to the other local MW-mass galaxies examined: they have a sparse satellite population but also have high star forming fractions among these satellites; such properties are also found in the galaxies examined as part of the SAGA survey. We suggest that these properties appear to be tied to the galactic environment, with more isolated galaxies showing sparse satellite populations which are more likely to have had recent star formation, while those in dense environments have more satellites which tend to have no recent star formation. Overall our results show a level of halo-to-halo scatter between galaxies of similar mass that is larger than is predicted in the LambdaCDM model.
Though smooth, extended spheroidal stellar outskirts have long been observed around nearby dwarf galaxies, it is unclear whether dwarfs generically host an extended stellar halo. We use imaging from the Hyper Suprime-Cam Subaru Strategic Program (HSC -SSP) to measure the shapes of dwarf galaxies out to four effective radii for a sample of dwarfs at 0.005<z<0.2 and 10^7<M_star/M_sun<10^9.6. We find that dwarfs are slightly triaxial, with a <B/A> >~ 0.75 (where the ellipsoid is characterized by three principle semi-axes constrained by C<=B<=A). At M_star>10^8.5 M_sun, the galaxies grow from thick disk-like near their centers towards the spheroidal extreme at four effective radii. We also see that although blue dwarfs are, on average, characterized by thinner discs than red dwarfs, both blue and red dwarfs grow more spheroidal as a function of radius. This relation also holds true for a comparison between field and satellite dwarfs. This uniform trend towards relatively spheroidal shapes as a function of radius is consistent with an in-situ formation mechanism for stellar outskirts around low-mass galaxies, in agreement with proposed models where star formation feedback produces round stellar outskirts around dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا