ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling synchronization in forced turbulent oscillator flows

122   0   0.0 ( 0 )
 نشر من قبل Benjamin Herrmann
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Periodically forced, oscillatory fluid flows have been the focus of intense research for decades due to their richness as a nonlinear dynamical system and their relevance to applications in transportation, aeronautics, and energy conversion. Recently, it has been observed that turbulent bluff-body wakes exhibit a subharmonic resonant response when excited with specific spatial symmetries at twice the natural vortex shedding frequency, which is hypothesized to be caused by triadic interactions. The focus of this paper is to provide new physical insight into the dynamics of turbulent oscillator flows, based on improved mechanistic models informed by a comprehensive experimental study of the turbulent wake behind a D-shaped body under periodic forcing. We confirm for the first time the role of resonant triadic interactions in the forced flow by studying the dominant components in the power spectra across multiple excitation frequencies and amplitudes. We then develop an extended Stuart-Landau model for the forced global wake mode, incorporating parametric and non-harmonic forcing. This model captures the system dynamics and reveals the boundaries of multiple synchronization regions. Further, it is possible to identify model coefficients from sparse measurement data, making it applicable to a wide range of turbulent oscillator flows. We believe these generalized synchronization models will be valuable for prediction, control, and understanding of the underlying physics in this ubiquitous class of flows.



قيم البحث

اقرأ أيضاً

Phoresis, the drift of particles induced by scalar gradients in a flow, can result in an effective compressibility, bringing together or repelling particles from each other. Here, we ask whether this effect can affect the transport of particles in a turbulent flow. To this end, we study how the dispersion of a cloud of phoretic particles is modified when injected in the flow, together with a blob of scalar, whose effect is to transiently bring particles together, or push them away from the center of the blob. The resulting phoretic effect can be quantified by a single dimensionless number. Phenomenological considerations lead to simple predictions for the mean separation between particles, which are consistent with results of direct numerical simulations. Using the numerical results presented here, as well as those from previous studies, we discuss quantitatively the experimental consequences of this work and the possible impact of such phoretic mechanisms in natural systems.
Closed-loop control of turbulent flows is a challenging problem with important practical and fundamental implications. We perform closed-loop control of forced, turbulent jets based on a wave-cancellation strategy. The study is motivated by the succe ss of recent studies in applying wave cancellation to control instability waves in transitional boundary layers and free-shear flows. Using a control law obtained through a system-identification technique, we successfully implement wave-cancellation-based, closed-loop control, achieving order-of-magnitude attenuations of velocity fluctuations. Control is shown to reduce fluctuation levels over an extensive streamwise range.
We present two models for turbulent flows with periodic boundary conditions and with either rotation, or a magnetic field in the magnetohydrodynamics (MHD) limit. One model, based on Lagrangian averaging, can be viewed as an invariant-preserving filt er, whereas the other model, based on spectral closures, generalizes the concepts of eddy viscosity and eddy noise. These models, when used separately or in conjunction, may lead to substantial savings for modeling high Reynolds number flows when checked against high resolution direct numerical simulations (DNS), the examples given here being run on grids of up to 1536^3 points.
We present velocity spectra measured in three cryogenic liquid 4He steady flows: grid and wake flows in a pressurized wind tunnel capable of achieving mean velocities up to 5 m/s at temperatures above and below the superfluid transition, down to 1.7 K, and a chunk turbulence flow at 1.55 K, capable of sustaining mean superfluid velocities up to 1.3 m/s. Depending on the flows, the stagnation pressure probes used for anemometry are resolving from one to two decades of the inertial regime of the turbulent cascade. We do not find any evidence that the second order statistics of turbulence below the superfluid transition differ from the ones of classical turbulence, above the transition.
Wall-bounded flows experience a transition to turbulence characterized by the coexistence of laminar and turbulent domains in some range of Reynolds number R, the natural control parameter. This transitional regime takes place between an upper thresh old Rt above which turbulence is uniform (featureless) and a lower threshold Rg below which any form of turbulence decays, possibly at the end of overlong chaotic transients. The most emblematic cases of flow along flat plates transiting to/from turbulence according to this scenario are reviewed. The coexistence is generally in the form of bands, alternatively laminar and turbulent, and oriented obliquely with respect to the general flow direction. The final decay of the bands at Rg points to the relevance of directed percolation and criticality in the sense of statistical-physics phase transitions. The nature of the transition at Rt where bands form is still somewhat mysterious and does not easily fit the scheme holding for pattern-forming instabilities at increasing control parameter on a laminar background. In contrast, the bands arise at Rt out of a uniform turbulent background at a decreasing control parameter. Ingredients of a possible theory of laminar-turbulent patterning are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا