ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable pseudo-magnetic fields for polaritons in strained metasurfaces

102   0   0.0 ( 0 )
 نشر من قبل Charlie-Ray Mann
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Artificial magnetic fields are revolutionizing our ability to manipulate neutral particles, by enabling the emulation of exotic phenomena once thought to be exclusive to charged particles. In particular, pseudo-magnetic fields generated by nonuniform strain in artificial lattices have attracted considerable interest because of their simple geometrical origin. However, to date, these strain-induced pseudo-magnetic fields have failed to emulate the tunability of real magnetic fields because they are dictated solely by the strain configuration. Here, we overcome this apparent limitation for polaritons supported by strained metasurfaces, which can be realized with classical dipole antennas or quantum dipole emitters. Without altering the strain configuration, we unveil how one can tune the pseudo-magnetic field by modifying the electromagnetic environment via an enclosing photonic cavity which modifies the nature of the interactions between the dipoles. Remarkably, due to the competition between short-range Coulomb interactions and long-range photon-mediated interactions, we find that the pseudo-magnetic field can be entirely switched off at a critical cavity height for any strain configuration. Consequently, by varying only the cavity height, we demonstrate a tunable Lorentz-like force that can be switched on/off and an unprecedented collapse and revival of polariton Landau levels. Unlocking this tunable pseudo-magnetism for the first time poses new intriguing questions beyond the paradigm of conventional tight-binding physics.

قيم البحث

اقرأ أيضاً

We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of struct ured metamaterial elements (metamolecules) and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.
239 - Maxim Durach 2020
In this paper we reveal the physics behind the formation of tri- and tetra-hyperbolic phases in anisotropic metamaterials without magnetoelectric coupling and describe the anti-crossing splitting phenomenon in the hyperbolic dispersion which arises d ue to the hybridization of the plasmonic and magnetic Bloch high-k polaritons. This considerably deepens the understanding of the high-k polaritons and the topology of the optical iso-frequency surfaces in k-space and will find applications in optical nano-resolution imaging and emission rate and directivity control. To accomplish this, we develop a range of new techniques of theoretical optics for bianisotropic materials, including the quadratic index of refraction operator method, suitable to study the high-k polaritons with finite indices of refraction and the explicit expression for the characteristic matrix in generic bianisotropic media. We introduce the spatial stratification approach for the electric and magnetic responses of anisotropic homogeneous media to analyze the underlying Bloch waves. We believe that the formalisms developed here can be useful for the researchers in the field of theoretical optics of anisotropic and bianisotropic media in the future.
Electromagnetic metasurfaces enable the advanced control of surface-wave propagation by spatially tailoring the local surface reactance. Interestingly, tailoring the surface resistance distribution in space provides new, largely unexplored degrees of freedom. Here, we show that suitable spatial modulations of the surface resistance between positive (i.e., loss) and negative (i.e., gain) values can induce peculiar dispersion effects, far beyond a mere compensation. Taking inspiration from the parity-time symmetry concept in quantum physics, we put forward and explore a class of non-Hermitian metasurfaces that may exhibit extreme anisotropy mainly induced by the gain-loss interplay. Via analytical modeling and full-wave numerical simulations, we illustrate the associated phenomenon of surface-wave canalization, explore nonlocal effects and possible departures from the ideal conditions, and address the feasibility of the required constitutive parameters. Our results suggest intriguing possibilities to dynamically reconfigure the surface-wave propagation, and are of potential interest for applications to imaging, sensing and communications.
Metasurfaces are ultrathin nanostructured surfaces that can allow arbitrary manipulation of light. Implementing dynamic tunability into their design could allow the optical functions of metasurfaces to be rapidly modified at will. The most pronounced and robust tunability of optical properties is provided by phase-change materials such as vanadium dioxide (VO2) and germanium antimony telluride (GST), but their implementations have been limited only to near-infrared wavelengths. Here, we demonstrate that VO2 nanoantennas with widely tunable Mie resonances can be utilized for designing tunable metasurfaces in the visible range. In contrast to the dielectric-metallic phase transition-induced tunability in previous demonstrations, we show that dielectric Mie resonances in VO2 nanoantennas offer remarkable scattering and extinction modulation depths (5-8 dB and 1-3 dB, respectively) for tunability in the visible. Moreover, these strong resonances are optically switchable using a continuous-wave laser. Our results establish VO2 nanostructures as low-loss building blocks of optically tunable metasurfaces.
Coherent perfect absorber (CPA) was proposed as the time-reversed counterpart to laser: a resonator containing lossy medium instead of gain medium can absorb the coherent optical fields completely. Here, we exploit a monolayer graphene to realize the CPA in a non-resonant manner. It is found that quasi-CPA point exists in the terahertz regime for suspending monolayer graphene, and the CPA can be implemented with the assistant of proper phase modulation among two incident beams at the quasi-CPA frequencies. The graphene based CPA is found of broadband angular selectivity: CPA point splits into two frequency bands for the orthogonal $s$ and $p$ polarizations at oblique incidence, and the two bands cover a wide frequency range starting from zero frequency. Furthermore, the coherent absorption can be tuned substantially by varying the gate-controlled Fermi energy. The findings of CPA with non-resonant graphene sheet can be generalized for potential applications in terahertz/infrared detections and signal processing with two-dimensional optoelectronic materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا