ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasma-environment effects on K lines of astrophysical interest III. IPs, K thresholds, radiative rates, and Auger widths in Fe ix - Fe xvi

117   0   0.0 ( 0 )
 نشر من قبل Patrick Palmeri
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. In the context of black-hole accretion disks, we aim to compute the plasma-environment effects on the atomic parameters used to model the decay of K-vacancy states in moderately charged iron ions, namely Fe ix - Fe xvi. Methods. We used the fully relativistic multiconfiguration Dirac-Fock (MCDF) method approximating the plasma electron-nucleus and electron-electron screenings with a time-averaged Debye-Huckel potential. Results. We report modified ionization potentials, K-threshold energies, wavelengths, radiative emission rates, and Auger widths for plasmas characterized by electron temperatures and densities in the ranges $10^5$ - $10^7$ K and $10^{18}$ - $10^{22}$ cm$^{-3}$. Conclusions. This study confirms that the high-resolution X-ray spectrometers onboard the future XRISM and ATHENA space missions will be capable of detecting the lowering of the K edges of these ions due to the extreme plasma conditions occurring in accretion disks around compact objects.



قيم البحث

اقرأ أيضاً

Aims. In the context of accretion disks around black holes, we estimate plasma-environment effects on the atomic parameters associated with the decay of K-vacancy states in highly charged iron ions, namely Fe xvii - Fe xxv. Methods. Within the relati vistic multiconfiguration Dirac-Fock (MCDF) framework, the electron-nucleus and electron-electron plasma screenings are approximated with a time-averaged Debye-Huckel potential. Results. Modified ionization potentials, K thresholds, wavelengths, radiative emission rates and Auger widths are reported for astrophysical plasmas characterized by electron temperatures and densities respectively in the ranges 1E5 - 1E7 K and 1E18 - 1E22 cm-3 . Conclusions. We conclude that the high-resolution micro-calorimeters onboard future X-ray missions such as XRISM and ATHENA are expected to be sensitive to the lowering of the iron K edge due to the extreme plasma conditions occurring in accretion disks around compact objects.
Aims. In the context of black-hole accretion disks, the main goal of the present study is to estimate the plasma environment effects on the atomic structure and radiative parameters associated with the K-vacancy states in ions of the oxygen isonuclea r sequence. Methods. We use a time-averaged Debye-Huckel potential for both the electron-nucleus and the electron-electron interactions implemented in the fully relativistic multiconfiguration Dirac-Fock (MCDF) method. Results. Modified ionization potentials, K thresholds, Auger widths and radiative transition wavelengths and rates are reported for O I - O VII in plasma environments with electron temperature and density ranges 10E5 - 10E7 K and 10E18 - 10E22 cm-3 .
A detailed analysis of the radiative and Auger de-excitation channels of K-shell vacancy states in Fe II-Fe IX has been carried out. Level energies, wavelengths, A-values, Auger rates and fluorescence yields have been calculated for the lowest fine-s tructure levels populated by photoionization of the ground state of the parent ion. Different branching ratios, namely K-alpha_2/K-alpha_1, K-beta/K-alpha, KLM/KLL, KMM/KLL, and the total K-shell fluorescence yields, omega_K, obtained in the present work have been compared with other theoretical data and solid-state measurements, finding good general agreement with the latter. The K-alpha_2/K-alpha_1 ratio is found to be sensitive to the excitation mechanism. From these comparisons it has been possible to estimate an accuracy of ~10% for the present transition probabilities.
Photoabsorption by and fluorescence of the K{alpha} transitions in highly charged iron ions are essential mechanisms for X-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main K{alpha} transitions in highly c harged iron ions from heliumlike to fluorinelike (Fe 24+...17+) using monochromatic X-rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in X-ray binaries and active galactic nuclei.
We study the spatial distribution of the Fe 6.4 and 6.7 keV lines in the nuclear region of M82 using the Chandra archival data with a total exposure time of 500 ks. The deep exposure provides a significant detection of the Fe 6.4 keV line. Both the F e 6.4 and 6.7 keV lines are diffuse emissions with similar spatial extent, but their morphology do not exactly follow each other. Assuming a thermal collisional-ionization-equilibrium model, the fitted temperatures are around 5-6 keV and the Fe abundances are about 0.4-0.6 solar value. We also report the spectrum of a point source, which shows a strong Fe 6.7 keV line and is likely a supernova remnant or a superbubble. The fitted Fe abundance of the point source is 1.7 solar value. It implies that part of the iron may be depleted from the X-ray emitting gases as the predicted abundance is about 5 solar value assuming complete mixing. If this is a representative case of the Fe enrichment, a mild mass-loading of a factor of 3 will make the Fe abundance of the point source in agreement with that of the hot gas, which then implies that most of the hard X-ray continuum (2-8 keV) of M82 has a thermal origin. In addition, the Fe 6.4 keV line is consistent with the fluorescence emission irradiated by the hard photons from nuclear point sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا