ﻻ يوجد ملخص باللغة العربية
Cosmic reionization put an end to the dark ages that came after the recombination era. Observations seem to favor the scenario where massive stars generating photons in low-mass galaxies were responsible for the bulk of reionization. Even though a possible contribution from accretion disks of active galactic nuclei (AGN) has been widely considered, they are currently thought to have had a minor role in reionization. Our aim is to study the possibility that AGN contributed to reionization not only through their accretion disks, but also through ionizing photons coming from the AGN jets interacting with the IGM. We adopt an empirically derived AGN luminosity function at $zsimeq6$, use X-ray observations to correct it for the presence of obscured sources, and estimate the density of jetted AGN. We then use analytical calculations to derive the fraction of jet energy that goes into ionizing photons. Finally, we compute the contribution of AGN jets to the H II volume filling factor at redshifts $zsimeq15-5$. We show that the contribution of the AGN jet lobes to the reionization of the Universe at $zsim6$ might have been as high as $gtrsim 10$% of that of star-forming galaxies, under the most favorable conditions of jetted and obscuration fraction. The contribution of AGN to the reionization, while most likely not dominant, could have been higher than previously assumed, thanks to the radiation originated in the jet lobes.
Feedback by Active Galactic Nuclei is often divided into quasar and radio mode, powered by radiation or radio jets, respectively. Both are fundamental in galaxy evolution, especially in late-type galaxies, as shown by cosmological simulations and obs
Recent models of super-massive black hole (SMBH) and host galaxy joint evolution predict the presence of a key phase where accretion, traced by obscured Active Galactic Nuclei (AGN) emission, is coupled with powerful star formation. Then feedback pro
The reionization of the Universe ends the dark ages that started after the recombination era. In the case of H, reionization finishes around $zsim 6$. Faint star-forming galaxies are the best candidate sources of the H-ionizing radiation, although ac
The cosmic history of supermassive black hole (SMBH) growth is important for understanding galaxy evolution, reionization and the physics of accretion. Recent NuSTAR, Swift-BAT and textit{Chandra} hard X-ray surveys have provided new constraints on t
We aim to determine the properties of the central region of NGC 1052 using X-ray and radio data. NGC 1052 (z=0.005) has been investigated for decades in different energy bands and shows radio lobes and a low luminosity active galactic nucleus (LLAGN)