ﻻ يوجد ملخص باللغة العربية
In many bio-surveillance and healthcare applications, data sources are measured from many spatial locations repeatedly over time, say, daily/weekly/monthly. In these applications, we are typically interested in detecting hot-spots, which are defined as some structured outliers that are sparse over the spatial domain but persistent over time. In this paper, we propose a tensor decomposition method to detect when and where the hot-spots occur. Our proposed methods represent the observed raw data as a three-dimensional tensor including a circular time dimension for daily/weekly/monthly patterns, and then decompose the tensor into three components: smooth global trend, local hot-spots, and residuals. A combination of LASSO and fused LASSO is used to estimate the model parameters, and a CUSUM procedure is applied to detect when and where the hot-spots might occur. The usefulness of our proposed methodology is validated through numerical simulation and a real-world dataset in the weekly number of gonorrhea cases from $2006$ to $2018$ for $50$ states in the United States.
We propose an efficient statistical method (denoted as SSR-Tensor) to robustly and quickly detect hot-spots that are sparse and temporal-consistent in a spatial-temporal dataset through the tensor decomposition. Our main idea is first to build an SSR
We develop a new methodology for spatial regression of aggregated outputs on multi-resolution covariates. Such problems often occur with spatial data, for example in crop yield prediction, where the output is spatially-aggregated over an area and the
This work is motivated by the Obepine French system for SARS-CoV-2 viral load monitoring in wastewater. The objective of this work is to identify, from time-series of noisy measurements, the underlying auto-regressive signals, in a context where the
We develop a distribution-free, unsupervised anomaly detection method called ECAD, which wraps around any regression algorithm and sequentially detects anomalies. Rooted in conformal prediction, ECAD does not require data exchangeability but approxim
Motivated by the analysis of high-dimensional neuroimaging signals located over the cortical surface, we introduce a novel Principal Component Analysis technique that can handle functional data located over a two-dimensional manifold. For this purpos